Candidate Name

CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

PHYSICS PAPER 3 Practical Test ANSWER BOOKLET

5054/3

MAY/JUNE SESSION 2002

2 hours

TIME 2 hours

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer all questions.

Write your answers in the spaces provided in this answer booklet.

FOR EXAMINER'S USE	
1	
2	
3	
4	
TOTAL	

This answer booklet consists of 7 printed pages and 1 blank page.

University of CAMBRIDGE Local Examinations Syndicate

Section A

- **1 (b) (i)** record of *F*
 - (ii) record of h_1

record of h_2

- (iii) record of l
- (c) (i) explanation of how you ensured that AB was horizontal
 - (ii) explanation of how the heights h_1 and h_2 were measured accurately
- (d) calculation of θ using $\sin \theta = \frac{h_2 h_1}{l}$
- (e) scale diagram using 1 cm = 1 N

value of T.....N

determination of $m_{\rm W}$

- (b) record of θ_1
- (c) record of θ_2
- (d) calculation of *Q*, using $Q = m_W c_W (\theta_2 \theta_1) + m_B c_B (\theta_2 \theta_1)$ where $c_W = 4.2 \text{ J/(g °C)}$ and $c_B = 0.67 \text{ J/(g °C)}$

3

(e) calculation of power, using power = energy/time

(f) statement of one assumption made in your calculations

- 3 (b) (i) record of V_{AB}
 - (ii) record of $V_{\rm BC}$
 - (iii) record of $V_{\rm AC}$
 - (c) comment on the results obtained in (b)

(d) record of I

(e) calculation of the resistances of R_1 and R_2 using resistance = $\frac{\text{voltage}}{\text{current}}$

4

Section B

5

- **4** (a) record of *h*_O
 - (b) (iii) explanation of how you would demonstrate experimentally that the image is inverted
 - (c) (i) record of *v*
 - (ii) record of $h_{\rm I}$
 - (d) calculation of *m* using $m = \frac{h_{\rm I}}{h_{\rm O}}$

(e) table of values of v, $h_{\rm I}$ and m

- (f) using the grid on page 7, plot a graph of m against v/cm
- (g) calculation of G

(h) calculation of f using f = 1/G

BLANK PAGE