Mark scheme 5054/2 - Theory November 2001

1(a) acceleration and velocity 1
(b)(i) forces in opposite directions 1
(ii) forces in the same direction 1
(iii) closed triangle or diagonal and sides of parallelogram drawn equilateral triangle with resultant clear and correct direction on 3 vectors 2

2(a) $\quad 0^{\circ} \mathrm{C}$ or $273 \mathrm{~K} \quad 1$
(b) use of proportionality clear in calculation e.g. $18 / 24 \times 100$ or 91.7 or 78.6 $75\left({ }^{\circ} \mathrm{C}\right)$
(c) $2.4 \times 100=240(\mathrm{~J})$
(d) resistance / (thermocouple) e.m.f. or voltage/ pressure of gas /colour etc

3(a)(i) correct indication of compression at point where coils are closest
(ii) springs/coils/atoms/molecules closer (than usual) or compressed or pressure is higher
(iii) springs/atoms/molecules vibrate or oscillate about a mean position or oscillate back and forth or parallel to wave or waves longitudinal or no overall movement of molecules
(b)(i) $\quad 2.6-3.0 \mathrm{~cm}$
(ii) $\quad v=f \lambda$
$75 / \mathrm{b}$ (i)
$25-29 \mathrm{~Hz} \quad 2$ or 3 significant figures only
4(a) $\quad 2.4-2.9 \mathrm{~mm}$ or cm or dm
(b) light refracts or bends towards normal slows down / wavelength is less / frequency constant
(c) (i) correct refraction with rays not meeting before or on the bottom of the disc
(ii) $0.5-1.2 \mathrm{~mm}$ (ie penalty for scale error)
(d) move lens up (accept away, backwards)

5(a) $\quad \mathrm{I}=\mathrm{P} / \mathrm{V}$
$2500 / 240=10.4(\mathrm{~A})$
(b)(i) $\quad 1.25(\mathrm{~mm}) \quad 1$
(ii) larger resistance or heating related to resistance in any way wire overheats /melts /burns / melts insulation
(c) wires short circuit or touch / L touches N or $\mathrm{E} /$ damage to insulation / water inside insulation

6(a) at least 3 lines approximately parallel in centre and perpendicular to ground
direction on at least 1 line from positive to negative charge
(b)(i) electrons or negative charge on drop1 move to drop 2 or charges neutralise/cancel each other on the two drops (not just + attracts -)
(ii) 1 positive or + and 2 negative or -
(c) work done or energy/charge or definition of volt as J/C

7(a)(i) magnetic field lines of magnet or magnetic lines of force or magnetic flux cut coil or flux through coil changes or current/emf is induced
(ii) N (pole)
(b)(i) (brief) current/ammeter reading in opposite direction or backwards or S pole at left of coil
(ii) no current or ammeter reading or nothing happens $\quad 1$

8(a) Any two from:
nucleus is unstable/emits/decays/changes/disintegrates/becomes stable, (the change occurs) at random/spontaneously, emitting alpha or beta or gamma particles
(b) gamma-rays are penetrating /only stopped by thick material or lead / ionising kill cells or bacteria/viruses/germs or have high energy
(c) Any two from:
rays are dangerous /harmful/cause death/illness or cancer / kill cells/ cause mutations,
rays spread out / more rays miss the body / minimises absorption by body, air absorbs some radiation / $\alpha o r \beta$-particles short distance in air

$$
\text { air absorbs some radiation / } \alpha o r \beta \text {-particles short distance in air }
$$

9(a)(i) molecules/particles/atoms vibrate or hit each other pass on energy/vibration from one to the next
(
(c) 1 positive or + and 2 negative or
(ii) flexible or fixed soft-iron magnetised (by current in coil) two pieces of soft iron attract or opposite poles attract
(iii) Any two of:
moving parts smaller or less massive in reed relay
contacts are closer
relay takes time to pull spring across
(b)(i) thermistor resistance decreases current in relay coil increases (not starts to flow)
(ii) $1 \quad \mathrm{R}=\mathrm{V} / \mathrm{I}$

2/0.1
20Ω
210 V
3 100 Ror2/0.1 2
11(a)(i) $\mathrm{s}=$ distance x time $=15 \times 20$
300m
(ii) \quad Force x distance $=1200 \mathrm{x}$ (i)

360000 J
(iii) $\quad \mathrm{P}=\mathrm{W}($ or E$) / \mathrm{t}=360000 / 20$

18000 W
(b)(i) K.E. $=1 / 2 \mathrm{mv}^{2}$
$=1 / 2800.15^{2}$
$=90000 \mathrm{~J}$
(ii) $\mathbf{1}$ (to work/provide force against) air resistance / friction

2 heat (internal/thermal energy) in air/road/tyres/wheels/surroundings or air turbulence/ K.E. of air
(c)(i) $\quad \mathrm{a}=(\mathrm{v}-\mathrm{u}) / \mathrm{t}=15 / 4$
$\mathrm{a}=3.7(5) \mathrm{m} / \mathrm{s}^{2}$
(ii) $\quad 3000 \mathrm{~N}($ or (c)(i) $\times 800) \quad 1$
(iii) car or wheel or drum moves faster /turns faster or use of power $=$ force x velocity clear

