

Mark Scheme (Results) January 2008

GCE O Level

O Level Pure Mathematics (7362_01)

Pure Mathematics, 7362 Paper 1

Q.	Scheme	Marks
1	$\cos M = \frac{5^2 + 6.4^2 - 8.2^2}{2 \times 5 \times 6.4}, M = 91.1^{\circ}$	M1A1,A1
2	$\sum_{r=7}^{50} (3r - 5) = \frac{44}{2} (32 + 129) = 3542$	(3) B1(44) M1A1 A1
3	(a) $\frac{dv}{dt} = -2 + 2t$, accel when $t = 3$ is 4 m/s ²	(4) M1A1,A1
	(b) dist = $\int_0^4 5 - 2t + t^2 dt = \left[5t - t^2 + \frac{1}{3}t^3 \right]_0^4$, = $20 - 16 + \frac{64}{3} = 25\frac{1}{3}$ m	MIA1,A1
4	(a) $\frac{dy}{dx} = 3e^{2x} + (3x - 2) \times 2e^{2x}$	(6) M1A1A1
	(b) $e^{2x} = \frac{y}{(3x-2)} + \frac{dy}{dx} = 3\frac{y}{(3x-2)} + (3x-2) \times 2\frac{y}{(3x-2)}$	M1A1
	$(3x-2)\frac{dy}{dx} = 3y + 6xy - 4y = (6x-1)y$	A1 (6)
5	(a) $V = \pi r^2 h = 50000\pi$ $r^2 h = 50000$	B1
	$A = 2\pi r h + \pi r^2, = 2\pi r \times \frac{50000}{r^2} + \pi r^2$	M1,M1
	$= \left(\frac{100000}{r} + r^2\right)\pi$ (b) $\frac{d4}{dr} = \left(-100000r^{-2} + 2r\right)\pi$	A1
	$\frac{\frac{dA}{dr}}{dr} = 0 \qquad 2r = \frac{100000}{r^2}, \qquad r^3 = 50000 \qquad r = 36.84$ $\frac{\frac{d^2A}{dr^2}}{dr^2} = \left(200000r^{-3} + 2\right)\pi > 0 \therefore \text{ min imum}$	M1 M1,A1
	$A_{\min} = 12791$	M1A1, B1 (10)
6	(a) $\alpha + \beta = 2$ $(\alpha + \beta) + \frac{1}{\alpha + \beta} = 2 + \frac{1}{2} = \frac{5}{2}$	M1,A1
	$x^2 - \frac{5}{2}x + 1 = 0 \qquad 2x^2 - 5x + 2 = 0$	M1A1
	(b) $\frac{\alpha+\beta}{\alpha} + \frac{\alpha+\beta}{\beta} = \frac{\alpha\beta+\beta^2+\alpha^2+\alpha\beta}{\alpha\beta} = \frac{(\alpha+\beta)^2}{\alpha\beta} = \frac{12}{p}$ $\text{Prod} = \frac{(\alpha+\beta)^2}{p} = \frac{12}{p}$	M1A1
	Prod. = $\frac{(\alpha+\beta)^2}{\alpha\beta} = \frac{12}{p}$, Eqn. $x^2 - \frac{12}{p}x + \frac{12}{p} = 0$ (c) $x = 3$: $9 - \frac{36}{p} + \frac{12}{p} = 0$, $9 = \frac{24}{p}$ $p = \frac{8}{3}$	B1,B1 M1A1
	(d) sum = $\frac{12}{p} = \frac{9}{2}$ other root = $\frac{9}{2} - 3 = \frac{3}{2}$	M1A1 (12)

7	(a) $(5x-9)(12x+4) = (7x-3)^2$	M1
'	$60x^2 - 88x - 36 = 49x^2 - 42x + 9$	
	$11x^2 - 46x - 45 = 0$	A1
	$(11x+9)(x-5)=0$ $x=\frac{-9}{11}$ $x=5$	MIA1A1
	(b) $x = 5$ 16,32,64 $r = 2$	M1A1
	(c) $a = \frac{16}{r^2} = 4$	M1A1
	(d) $S_{12} = \frac{4(2^{12}-1)}{1} = 16380$	M1A1 (11)
8	(a) $f'(x) = 3x^2 - 4x - 4$ $f(x) = x^3 - 2x^2 - 4x + c$	M1A1
	thro' $(1,0)$ $0=1-2-4+c$ $c=5$	B1
	$f(x) = x^3 - 2x^2 - 4x + 5$	
	(b) $3x^2 - 4x - 4 = 0$ $(3x+2)(x-2) = 0$ $x = \frac{-2}{3}$ $x = 2$	M1
	$P \text{ is } \left(\frac{-2}{3}, 6\frac{13}{27}\right)$ $Q \text{ is } (2, -3)$	A1A1
	(c) (i) tang. at P : $y = 6\frac{13}{27}$	B1√
	(ii) normal at $Q: x=2$	B1√
	(d) $ \int_{\frac{1}{3}}^{1} \left(x^3 - 2x^2 - 4x + 5 \right) dx = \left[\frac{1}{4} x^4 - \frac{2}{3} x^3 - 2x^2 + 5x \right]_{\frac{2}{3}}^{1} $	M1A1√
	$= \left(\frac{1}{4} - \frac{2}{3} - 2 + 5\right) - \left(\frac{1}{4} \times \frac{16}{81} + \frac{2}{3} \times \frac{8}{27} - 2 \times \frac{4}{9} - 5 \times \frac{2}{3}\right) = 6\frac{1813}{324}$	M1
	$\int_{1}^{2} \left(x^{3} - 2x^{2} - 4x + 5 \right) dx = 4 - \frac{16}{3} - 8 + 10 - \left(\frac{1}{4} - \frac{2}{3} - 2 + 5 \right) = -1 \frac{11}{12}$	Ml
	Reqd. area = $6\frac{13}{27} \times 2\frac{2}{3}$, $+1\frac{11}{12} - 6\frac{1813}{324} = 12\frac{52}{81}$	B1,M1A1
		(15)
9	(a) $\cos 2\theta = \cos^2 \theta - \sin^2 \theta = \cos^2 \theta - (1 - \cos^2 \theta) = 2\cos^2 \theta - 1$	M1A1
	(b) $\sin 2\theta = \sin \theta \cos \theta + \sin \theta \cos \theta = 2 \sin \theta \cos \theta$	B1
	(c) $\cos 3\theta = \cos(2\theta + \theta) = \cos 2\theta \cos \theta - \sin 2\theta \sin \theta$	M1
	$= (2\cos^2\theta - 1)\cos\theta - 2\sin^2\theta\cos\theta$	M1
	$=2\cos^3\theta-\cos\theta-2(1-\cos^2\theta)\cos\theta=4\cos^3\theta-3\cos\theta$	M1A1
	(d) $9\cos\theta - 12\cos^3\theta = 2 - 3(4\cos^3\theta - 3\cos\theta) = 2$	M1
	$-3\cos 3\theta = 2 \cos 3\theta = -\frac{2}{3} 3\theta = 2.3005, 3.9826, 8.$	M1
-	$\theta = 0.767, 1.33, 2.86$	A2,1,0
	(e) $\int_0^{\frac{\pi}{2}} \left(3\cos^3\theta + 2\sin\theta\right) d\theta = \int_0^{\frac{\pi}{2}} \frac{3}{4} \left(\cos 3\theta + 3\cos\theta\right) + 2\sin\theta d\theta$	
	$= \left[\frac{3}{4} \left(\frac{1}{3} \sin 3\theta + 3 \sin \theta\right) - 2 \cos \theta\right]_0^{\frac{\pi}{2}}$	M1A1
	$= \frac{3}{4} \left(\frac{1}{3} \times (-1) + 3 - 0 \right) - 0 + 2 = 4$	M1A1 (16)

10	(a) D (b) A V	$HB^{2} = \frac{1}{4} (10^{2} + 10^{2}) = \frac{200}{4} = 50$ $VH^{2} = 18^{2} - 50$ $VH = \sqrt{274} = 16.6 \text{ cm}$	M1 M1A1
	(b) 18 18 H VSO	$\cos \theta = \frac{\sqrt{50}}{18}$ $\theta = 66.86 = 66.9^{\circ}$	M1A1 A1
	(c) V Mopt of AB 5 H	$\tan \alpha = \frac{\sqrt{274}}{5}$ $\alpha = 73.19 = 73.2^{\circ}$	M1A1 A1
	(d) V	$\sin\left(\frac{1}{2}AVB\right) = \frac{5}{18} \angle AVB = 32.255$ $\sin AVB = \frac{x}{18} x = 9.606 = 9.61 \text{ cm}$	M1A1 M1A1
	(e) 7 = 9-606 7 = 9-606 D 1200 B	$\sin \frac{1}{2}\phi = \frac{\frac{1}{2}\sqrt{200}}{9.606}$ $\frac{\frac{1}{2}\phi = 47.4^{\circ}}{\phi = 94.8^{\circ}}$	M1A1 A1 A1 (17)