

Mark Scheme (Results) Summer 2010

GCE O Level

GCE O Level Mathematics B (7361/02)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call our Customer Services on + 44 1204 770 696, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Mathematics B, Mark Scheme

7361 June 2010 Paper 2

1. (a) £ 0.72

- В1
- 1

2

(b) 2.34/c's(0.72) OR $\frac{15 \times 2.34}{10.80}$

M1

3.25 kg

Α1

Total 3 marks

2. 6 + $15x - 2x - 5x^2$ (condone one sign error)

M1

attempt to differentiate c's quadratic

M1 dep

Α1

A1 ft

4

33

Total 4 marks

3. (a) $\frac{3}{4} \times \frac{4}{5} \times \frac{5}{8}$, $\frac{3}{8}$ (o.e.)

M1, A1

2

(b) $\frac{34}{4} \times \frac{1}{5} \times \frac{5}{8} + \frac{34}{4} \times \frac{4}{5} \times \frac{3}{8} + \frac{14}{4} \times \frac{4}{5} \times \frac{5}{8}$ (at least two correct terms added together)

M1

+ c's(3/8)

M1 dep

131/160 (o.e.)

Α1

3

Alternative method (Complement)

At least 2 of the following triplets:

$$\frac{1}{4}x\frac{1}{5}x\frac{3}{8}$$
, $\frac{1}{4}x\frac{1}{5}x\frac{5}{8}$, $\frac{1}{4}x\frac{4}{5}x\frac{3}{8}$, $\frac{3}{4}x\frac{1}{5}x\frac{3}{8}$

M1

1 - 4 correct probability triplets

M1 dep

131/160 (o.e)

Α1

Total 5 marks

4.	(a)	3/11 x 8.25, £ 2.25	M1, A1	2
	(b)	(Cost of labour =) £6.00 (cao)	B1 ft	
		$\frac{1}{3} \times 2.25 \ (=0.75)$	M1	
		% decrease = $c's(0.75)/c's(6) \times 100$	M1 dep	
		12.5% (cao)	A1	4
			Total 6 m	narks
		2		
5.	(a)	$XD. 9 = 4 \times 6$, $2\frac{2}{3}$ (o.e. i.e. 2.67 or 24/9)	M1, A1	2
	(b)	$12^2 = PA \cdot (PA + 10)$ (o.e.)	M1	
		$x^2 + 10x - 144 \ (=0)$	A1	
		attempt to factorise a trinomial quadratic	M1	
		x = 8 (ignore other solutions)	A1	
		conclusion, in words	A1	5
			Total 7 m	narks
6.	(a)	(-4 - 1)/(10 - 0) (o.e.), -1/2 (o.e.)	M1, A1	2
	(b)	m = c's(a) OR c = 1	M1	
		y = -1/2x + 1 (o.e.)	A1	2
	(c)	$y \le 0$, $y \ge -4$	B1, B1	
		$x \ge 0$,	B1	
		$y \leq c's(b)$	B1 ft	4
			Total 8 m	narks

7.	(a)	1.2 seen	B1	
		CD = $\sqrt{(1.6^2 + c's(1.2)^2)}$ (o.e.), conclusion	M1, A1	3
	(b)	four surface areas found using correct formulae	M1	
		completely correct method for total area	M1 dep	
		108.8 cm ² (accept 109)	A1	3
	(c)	area of c's trapezium $\times 8$, 51.2 cm^3	M1, A1	2
	(d)	seeing 20	M1	
		length = $c's(51.2)/(20 \times 0.8)$	M1	
		3.2 cm	A1	3
			Total 11 ma	arks_
8.	(a)	60/ <i>x</i>	B1	1
	(b)	60/(x + 120)	B1	1
	(c)	9/20 (o.e.)	B1	1
	(d)	c's(a) - c's(b)	M1	
		60/x - 60/(x + 120) = 9/20 (o.e)	A1	2
	(e)	Correctly removing denominators (allow one sign error) (numerators can be unsimplified)	M1	
		$9x^2 + 1080 x - 144 000 (= 0)$ (o.e.)	A1 ft	
		conclusion	A1	3
	(f)	attempt to factorise a trinomial quadratic or correct use of formula	M1	
		(x - 80)(x + 200) = (= 0)	A1	
		x = 80 (ignore -200)	A1	3
	(g)	c's (b) with c's (80) substituted 18 secs	M1, A1	2
			Total 13 ma	arks

9.	(a)	$\sqrt{(25.2^2 - 22.5^2)}$, 12 cm	M1, A1	2
	(b)	$\cos \angle ADO = 22.5/25.5$ (o.e.), 28.1°	M1, A1	2
	(c)	using c's(12) - 5	M1	
		$\sqrt{(c's(12)^2 - c's(7)^2)}$	M1 dep	
		conclusion	A1	3
	(d)	tan ⁻¹ (9.75/c's(7)) (o.e.)	M1	
		∠ <i>COB</i> = 54.3°	A1	2
	(e)	\sin^{-1} (c's(7)/25.5) (o.e.), 15.9° (or better)	M1, A1	
		c's(15.9°) + c's(28.1°)	M1 dep	
		44.0°	A1	4
			Total 13 ma	arks
10.	(a)	Δ A	B1	1
	(b)	Δ Β	B3(-1ee)	3
	(c)	Δ C	B2 ft (-1ee)	2
	(d)	y = x	B1	1
	(e)	Δ D	B3 ft (-1ee)	3
	(f)	Reflection	M1	
		In x axis or $y = 0$	A1	2
	(g)	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	B2(-1ee)	2
			Total 14 ma	arks

11. (a) (i) 2. (3^3) - 5. (3^2) - 4.3 + 3 M1 = 0 + conclusion M1 dep (ii) (x-3) $2x^2 + x \dots$ (x-3) $2x^3 - 5x^2 - 4x + 3$ M1 $2x^2 + x - 1$ Α1 a valid method for factorising a trinomial quadratic M1 (2x-1)(x+1)Α1 6 -3, -7, -15.5 (b) B1,B1,B1 3 SC: -6, -14, -31 \Rightarrow B1, B0, B0 (c) graph penalties B3 3 straight line segments each point missed (±½ small square) each missed segment each point not plotted each point incorrectly plotted (±½ small square) tramlines in two or more segments very poor curve (curve should be smooth and not erratic) $2x^3 - 8x^2 + 4 = 1 + 4x - 3x^2$ M1 (d) OR $x^3 - \frac{5}{2}x^2 - 2x + \frac{3}{2} = 0$ conclusion 2 Α1 (e) 3, 0.5, -1 (cao) 2 correct values В1 2 all 3 correct В1 Total 16 marks

Further copies of this publication are available from International Regional Offices at www.edexcel.com/international For more information on Edexcel qualifications, please visit www.edexcel.com Alternatively, you can contact Customer Services at www.edexcel.com/ask or on + 44 1204 770 696 Edexcel Limited. Registered in England and Wales no.4496750

Registered Office: One90 High Holborn, London, WC1V 7BH