Mark Scheme (Results) Summer 2010

GCE 0 Level

GCE O Level Mathematics B (7361/02)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call our Customer Services on + 441204770 696, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

Summer 2010
All the material in this publication is copyright
© Edexcel Ltd 2010

7361 J une 2010 Paper 2

1. (a) $£ 0.7$
(b) $\quad 2.34 / \mathrm{c}$'s(0.72) $\mathrm{OR} \frac{15 \times 2.34}{10.80}$

M1
3.25 kg

A1
2
Total 3 marks
2. $6+15 x-2 x-5 x^{2}$ (condone one sign error) M1
attempt to differentiate c's quadratic M1 dep
13-10x (o.e. i.e. 15-2-10x) A1
33 A1 ft
4

Total 4 marks
3.
(a) $3 / 4 \times 4 / 5 \times 5 / 8$,
3/8 (o.e.)
M1, A1

2
(b) $3 / 4 \times 1 / 5 \times 5 / 8+3 / 4 \times 4 / 5 \times 3 / 8+1 / 4 \times 4 / 5 \times 5 / 8$ (at least two correct terms added together)

M1

+ C's(3/8) M1 dep
131/160 (o.e.)
A1
3
Alternative method (Complement)
At least 2 of the following triplets:
$\frac{1}{4} \times \frac{1}{5} \times \frac{3}{8}, \quad \frac{1}{4} \times \frac{1}{5} \times \frac{5}{8}, \quad \frac{1}{4} \times \frac{4}{5} \times \frac{3}{8}, \quad \frac{3}{4} \times \frac{1}{5} \times \frac{3}{8} \quad$ M1
1 - 4 correct probability triplets M1 dep
131/160 (o.e) A1
Total 5 marks

4.

(a) $3 / 11 \times 8.25, \quad £ 2.25$

M1, A1
2
(b) (Cost of labour $=) € 6.00$
(cao)
B1 ft
$\frac{1}{3} \times 2.25(=0.75)$
M1
$\%$ decrease $=c$'s(0.75)/c's(6) $\times 100$
M1 dep

$$
12.5 \% \quad \text { (cao) }
$$

A1
4
5.
(a) $\mathrm{XD} 9=.4 \times 6$,
$2 \frac{2}{3}$ (o.e. i.e. 2.67 or $24 / 9$)
M1, A1
2
(b) $12^{2}=\mathrm{PA} .(\mathrm{PA}+10) \quad$ (o.e.)
M1
$x^{2}+10 x-144 \quad(=0)$ A1
attempt to factorise a trinomial quadratic M1 $x=8$ (ignore other solutions) A1
conclusion, in words
A1
5
6.

7. (a) 1.2 seen
$\left.C D=\sqrt{ }\left(1.6^{2}+C \text { 's(1.2 }\right)^{2}\right) \quad$ (o.e.), conclusion $\quad M 1, A 1 \quad 3$
(b) four surface areas found using correct formulae M1
completely correct method for total area M1 dep
$108.8 \mathrm{~cm}^{2} \quad$ (accept 109) A1
3
(c) area of c's trapezium $\times 8, \quad 51.2 \mathrm{~cm}^{3}$

M1, A1
2
(d) seeing 20

M1
length $=c$'s(51.2)/(20 x 0.8)
M1
3.2 cm

A1
3
8.

(a)	60/x		B1	1
(b)	60/($x+120$)		B1	1
(c)	9/20 (o.e.)		B1	1
(d)	c's(a) - c's(b)		M1	
	$60 / x-60 /(x+120)=9 / 20$	(o.e)	A1	2
(e)	Correctly removing denominators (allow one sign error) (numerators can be unsimplified)		M1	
	$9 x^{2}+1080 x-144000(=0)$	(o.e.)	A1 ft	
	conclusion		A1	3
(f)	attempt to factorise a trinomial quadratic or correct use of formula		M1	
	$(x-80)(x+200)(=0)$		A1	
	$x=80 \quad$ (ignore -200)		A1	3
(g)	c's (b) with c's (80) substituted	18 secs	M1, A1	2

9.

(a) $\left.\sqrt{\left(25.2^{2}-22.5^{2}\right.}\right), \quad 12 \mathrm{~cm}$
M1, A1
2
(b) $\cos \angle \mathrm{ADO}=22.5 / 25.5 \quad$ (o.e.)
28.1°
M1, A1
2
(c) using c's(12)-5

M1
$\sqrt{\left(c^{\prime} s(12)^{2}-c^{\prime} s(7)^{2}\right)}$
M1 dep
conclusion A1
3
(d) $\tan ^{-1}\left(9.75 / c^{\prime} s(7)\right) \quad$ (o.e.) M1
$\angle C O B=54.3^{\circ} \quad \mathrm{A} 1$
(e) $\sin ^{-1}\left(c^{\prime} s(7) / 25.5\right)$ (o.e.), $\quad 15.9^{\circ}$ (or better)

M1, A1
$c^{\prime} s\left(15.9^{\circ}\right)+c^{\prime} s\left(28.1^{\circ}\right)$
M1 dep
44.0°
A1
4
10. (a) $\Delta \mathrm{A}$

B1
1
(b) ΔB

B3(-1ee) 3
(c) $\Delta \mathrm{C}$

B2 ft
(-1ee)
(d) $y=x$

B1
1
(e) $\Delta \mathrm{D}$
(f) Reflection

B3 ft
(-1ee)

In x axis or $y=0$
A1
2
(g) $\quad\left(\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right)$ B2(-1ee)

2
11.

(a) (i)	2. $\left(3^{3}\right)-5 .\left(3^{2}\right)-4.3+3$	M1	
	$=0 \quad+$ conclusion	M1 dep	
	$(x - 3) \longdiv { 2 x ^ { 2 } + x \ldots \ldots } \begin{array} { \| c } { 2 x ^ { 3 } - 5 x ^ { 2 } - 4 x + 3 } \end{array}$	M1	
	$2 x^{2}+x-1$	A1	
	a valid method for factorising a trinomial quadratic	M1	
	$(2 x-1)(x+1)$	A1	6
(b)	-3, -7, -15.5	B1, B1, B1	3
	SC: $-6,-14,-31 \Rightarrow \mathrm{~B} 1, \mathrm{BO}, \mathrm{BO}$		
(c)	graph penalties straight line segments each point missed ($\pm 1 / 2$ small square) each missed segment each point not plotted each point incorrectly plotted ($\pm 1 / 2$ small square) tramlines in two or more segments very poor curve (curve should be smooth and not erratic)	B3	3
(d)	$2 x^{3}-8 x^{2}+4=1+4 x-3 x^{2}$	M1	
	OR		
	$x^{3}-\frac{5}{2} x^{2}-2 x+\frac{3}{2}(=0)$		
	conclusion	A1	2
(e)	3, 0.5, -1 (cao)		
	2 correct values	B1	
	all 3 correct	B1	2

all 3 correct
B1
2

Further copies of this publication are available from
International Regional Offices at www.edexcel.com/international
For more information on Edexcel qualifications, please visit www.edexcel.com
Alternatively, you can contact Customer Services at www.edexcel.com/ask or on + 441204770696
Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

