## Mark Scheme January 2009

GCE O Level

## O Level Mathematics B (7361)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call our Customer Services on +441204770 696, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

January 2009
All the material in this publication is copyright
© Edexcel Ltd 2009

## Contents

1. 736101 Mark Scheme ..... 5
2. 736102 Mark Scheme ..... 13

## Paper 1

1. 

(a) 0.0625
B1 1
(o.e.) B1 ft 1
(b) $6.25 \%$

Total 2 marks
2. an attempt at the bisector of $\angle R P Q$ drawn M 1
bisector of $\angle R P Q$ drawn $\pm 1 \mathrm{~mm}$ (ie no daylight) A1
3. $4 x-\frac{x}{3}>10+1$
(o.e.) M1
$x>3$
A1
2
Total 2 marks
4. (a) 75 mins

B1 1
(b) 45 mins

B1 1
2
Total 2 marks
5.
(a) 0

B1 1
(b) 2

B1 1
2
Total 2 marks
$\begin{array}{ll}\text { 6. } \frac{54}{A}=\frac{9^{2}}{4.5^{2}} & \text { (o.e.) } M 1\end{array}$
$13.5 \mathrm{~cm}^{2}$
A1
7. $4 x+x=180$

36
M1
A1
2
Total 2 marks
8. $\quad 11$ and 29 clearly identified

40
9. $w=90^{\circ}$
$a=-1$
B1
M1
A1

## Total 2 marks

B1

## 2

Total 2 marks
10. $\frac{?}{1000} \times 360=126$
$?=\frac{126 \times 1000}{360}$
350 red cars

M1

M1 dep

A1
3
Total 3 marks
11. Either:

$$
\begin{array}{lr}
3 x-4=3-2 x & \text { M1 } \\
3 x+2 x=3+4 & \text { (isolating } x \text { ) M1 } \\
x=\frac{7}{5} & \text { (o.e.) A1 }
\end{array}
$$

or:
$(y+4) / 3=(3-y) / 2 \quad$ (allow one slip)
$y=1 / 5$
substituting c's(1/5) into either equation
isolating $x$
$x=\frac{7}{5}$
(o.e.) A1
12.
(a) 9 km
(b) $\quad \cos 50=\frac{\mathrm{c} \text { 's(9) }}{\text { distance to mast }}$
14.0 km

Alternatively:
$P M / c^{\prime} s(9)=\tan 50$ (10.73...)
$Q M^{2}=c^{\prime} s(9)^{2}+c^{\prime} s(10.73)^{2}$
14.0 km

A1
Total 3 marks
13. (a) correct line drawn
both end points correctly identified with appropriate symbols
(b) $-1,0$

B1 1
3
Total 3 marks
14. (a) 234
(b) $\frac{\Sigma \text { of fish }}{11}$

266
(sum of 11 terms)
M1

A1
2
Total 3 marks
15. either:
taking $x$ out correctly as a factor $x\left(3 x^{2}+2 x-1\right)$
attempt at factorising c's trinomial quadratic $x(3 x-1)(x+1)$

M1
$x(3 x-1)(x+1)$
A1
or:
attempt at factorising $c$ 's trinomial cubic $\left(3 x^{2}-x\right)(x+1)$
taking $x$ out correctly from their factored form
$x(3 x-1)(x+1)$
$x(3 x-1)(x+1)$
16. $3 x^{2}-2-\frac{1}{x^{2}} \quad$ (at least2 terms correct) $M 1$
$3 \times 2^{2}-2-\frac{1}{2^{2}} \quad$ (subs $\left.x=2\right) \quad$ M1 dep
9.75 (o.e.) A1

3
Total 3 marks
17. (a) 4, 10
(b) 2

B1 1
(c) 9,15

B1 1
3
Total 3 marks
18. $O A=O B=\sqrt{\frac{10^{2}}{2}}(7.1 \ldots) \quad$ (o.e.) B 1
either $\frac{90}{360} \times \pi \times c^{\prime} s(7.1 . .)^{2}$ or $\frac{1}{2} \times c^{\prime} s(7.1)^{2} \quad M 1$
difference between c's two areas M1 dep
$14.3 \mathrm{~cm}^{2}$
A1
4
Total 4 marks
19. $375=\frac{k}{2^{2}}$

M1
$k=2^{2} \times 375(1500)$
(o.e.) M1 dep
$c^{\prime} s(k) \div 5^{2}$
(o.e.) M1 dep

60
A1
4
Total 4 marks
20. (a) one correctly identified pair of angles equal with reason B1
a second correctly identified pair of angles equal with reason and conclusion
e.g.
$\angle A E D=\angle B E C$ vertically opposite $\angle \mathrm{s}$,
$\angle D A C=\angle D B C \quad \angle \mathrm{~s}$ in same segment
(b) $\frac{A E}{B E}=\frac{A D}{B C}$

$$
A E \times B C=B E \times A D
$$

21. Either:
removing denominators correctly
$(a-x) a y=a(x+a y)+a-x$
expanding terms (one sign error allowed)
$a^{2} y-a x y=a x+a^{2} y+a-x$ M1
collecting terms (one sign error allowed)
$x-a x-a x y=a$
(o.e.) M1
$x=\frac{a}{1-a-a y}$
(o.e.) A1
or:

$$
\frac{x+a y}{a-x}=y-\frac{1}{a}
$$

expanding terms (one sign error allowed)
$x+a y=a y-x y-1+\frac{x}{a}$
collecting terms (one sign error allowed)
$x+x y-\frac{x}{a}=-1$
removing denominator correctly
$a x+a x y-x=-a$
(o.e.) M1
$x=\frac{a}{1-a-a y}$
(o.e.) A1
22. (a) either:

$$
\begin{aligned}
& 18+n(B)-7=27 \\
& \text { or: }
\end{aligned}
$$


$\mathrm{n}(B)=16$
A1 2
(b) either:
$\mathrm{n}\left(A \cap B^{\prime}\right)=11$ and $\mathrm{n}\left(C \cap B^{\prime}\right)=21-\mathrm{C}^{\prime} \mathrm{s}(5)$
or:
$32+27-c \times s(a)$
43
(o.e.) M1

A1 2
Total 4 marks
23. $\sqrt{20^{2}-12^{2}} \quad(=16)$
$\pi \times 12^{2} \times c^{\prime} s(16) \quad$ or $\quad \frac{1}{3} \times \pi \times 12^{2} \times c^{\prime} s(16) \quad$ M1
$\pi \times 12^{2} \times 16^{\prime \prime}-\frac{1}{3} \times \pi \times 12^{2} \times 16^{\prime \prime} \quad$ M1 dep
4830 , 4820 (using $=3.14$ )
A1
4
Total 4 marks
24. $-10 x^{2}+13 x=-3$

M1
$10 x^{2}-13 x-3(=0)$
attempt at solving a trinomial quadratic $(2 x-3)(5 x+1)(=0)$

M1

$$
\begin{array}{ll}
\frac{3}{2},-\frac{1}{5} & \text { (o.e.) } \mathrm{A} 1, \mathrm{~A} 1
\end{array}
$$

25. (a) $12 \%$

B1 1
(b) either:

22 B1
(total weight $=$ ) $25+2 x \quad$ B1
$\frac{\text { any numerical value }}{25+2 x}=\frac{2}{3} \quad M 1$
4 kg A1
A1 45
or:
33
B1
(total weight =) $25+2 x$
B1
$25+2 x=33$
M1
4 kg
A1
26. (a) $|A B|=\sqrt{3^{2}+3^{2}}$

M1
$k=18$
A1 2
(b) Correct use of Pythag. on at least one side M1

Correct Pythag. method to find all 3 sides M1 dep
conclusion correctly obtained
A1 3
5
Alternatively:
Gradient of $O A=1 \quad$ M1
Gradient of $A B \quad=-1 \quad$ M1 dep
Gradient of $O A \times$ gradient of $A B=-1$ So $O A$ is perpendicular to $A B$

A1
Total 5 marks
27. correctly substituting
$\frac{3+x}{3-x}=\frac{x+4}{x-4}$ M1
removing the denominator $(3+x)(x-4)=(x+4)(3-x)$ M1 dep

Expanding, allowing one slip max.
$x^{2}-x-12=-x^{2}-x+12$
(o.e.) M1 dep
$2 x^{2}-24(=0)$ A1
3.46, -3.46 (or equivalent surd form)

A1, A1
6
Total 6 marks
28. (a) no gaps and class boundaries correct

B1
1 correctly drawn height B1

2 correctly drawn heights B1
all correct
B1 4
(0.9, 1.4, 2.3, $1.7 \pm \frac{1}{2}$ small square)
(b) $10 \times c^{\prime} s(0.9)+10 \times c^{\prime} s(1.4)$
(o.e.) M1

23 goals
A1 2
6
Total 6 marks
29. (a) $\sin \angle E A D=\frac{3}{10} \quad$ (o.e.) M 1

Alternatively:
Using Pythagoras and then $\tan \angle E A D=3 / \sqrt{ }$ c $s(91)$
$\angle E A D=17.5^{\circ}$
A1 2
(b) $\quad A D=\sqrt{10^{2}-3^{2}} \quad(=9.5394)$

M1
$\tan \left(20+c^{\prime} s(\angle E A D)\right)=\frac{B D}{c^{\prime} s(A D)} \quad \mathrm{M} 1 \mathrm{dep}$
$B D=7.30,7.31,7.32$
A1 3
(c) $\triangle A B C=\frac{1}{2} \times\left(2 \times c^{\prime} s(A D)\right) \times c^{\prime} s(B D)$ (o.e.) M1
$\triangle A B C=69.5 \rightarrow 69.8 \mathrm{~cm}^{2}$
A1 2

## Paper 2

1. 3.6
$\frac{" 3.6^{13}-3.0^{3}}{3.0^{3}} \times 100$
B1
72.8\%
A1

3
Total 3 marks
2.
(a) $3 \mathrm{~cm}=1.2 \times 1000 \times 100 \mathrm{~cm}$ 1: 40000
(b) $1.6=$ Area $\times\left(\frac{" 40000 "}{1000 \times 100}\right)^{2}$ $10 \mathrm{~cm}^{2}$
o.e M1
A1 2
o.e M1
A1 2
4
Total 4 marks
3.
(a) $12 t-3$
(1 term correct namely $12 t$ ) M
M1 DEP
A1 3
(b) $\quad$ " $\frac{d v}{d t} "=12 \quad$ (differentiating)
M1
c.c
A1 2
5
Total 5 marks
4. $\frac{x(x-3)+12 x}{2(x-3)}=1 \quad$ (combining fractions) M1
$x^{2}+9 x=2 x-6 \quad$ (elim. denominator) M1 DEP
NB: A total of 1 slip is allowed for both of the above 2 Ms
$x^{2}+7 x+6=0$
$(x+1)(x+6)=0$
-1
-6
(solving trinomial quadratic)

A1
M1 INDEP
A1
A1
6
Total 6 marks
5. (a) $\frac{12}{25}, 0.48 .48 \%$ B1 1
(b) $\frac{6}{25}, 0.24,24 \%$ B1 1
(c) $\frac{1}{25}, 0.04,4 \%$

B1 1
(d) $\frac{3}{25}$

B1
$\frac{3}{25} \times \frac{2}{24}$
M1
$\frac{1}{100}, \frac{6}{600}, 0.01,1 \%$
A1 3
(e) $\frac{2}{25}$

B1
$\frac{2}{25} \times \frac{1}{24}$
M1
$\frac{1}{300}, \frac{2}{600}, 0.0033,0.33 \%$ or better
A1 3
9
Total 9 marks
6.
 denominator and multiplying out brackets)

M1 DEP
$x_{ \pm}=\frac{1}{ \pm 2-1} \quad$ OR $\quad(3 x-1)(x+1)=0$ (solving quadratic)

M1 DEP
$x=\frac{1}{3}, \frac{9}{27}, 0.333$ or better
-1
S.C: $\frac{1}{x}-1=2$ scores M1 MO AO AO
7.
(a) $\frac{(2 \times 8-4) \times 90}{8}$
$135^{\circ}$ M1

A1 2
(b) $\angle E F D=\frac{180-\text { " } 135 \text { " }}{2}$ M1
$22.5^{\circ}$
A1 2
(c) $\angle D H E=67.5^{\circ}$ OR $\angle F X D=90^{\circ}$ B1
$\angle X D F=45^{\circ}$
B1 2
(d) $\angle C B Y=67.5^{\circ}$ (symmetry of FBCDE and FGHAB)
$\angle B C Y=45^{\circ} \quad$ ( $\angle \mathrm{s}$ of quad. and symmetry) B1
$\angle B Y C=67.5^{\circ}(\angle s$ of $\triangle) \quad$ B1
c.c (eg 2 angles equal $\therefore \Delta B Y C \therefore \Delta B Y C$ is isosceles)
[S.C.: No reasons, and $\angle C B Y=67.5^{\circ}$ and $\angle B Y C=67.5^{\circ}$
B1
$\angle C B Y=67.5^{\circ}$ and $\angle B Y C=67.5^{\circ}$ and 1 reason for 67.5 angle B1
$\angle C B Y=67.5^{\circ}$ and $\angle B Y C=67.5^{\circ}$ and 2 reasons for 67.5 angle
B1
c. c.
B1

Total 10 marks
8.
(a) (i) $a-b$ B1
(ii) $\frac{2}{3}(a-b)$ B1 ft
(iii) $\frac{1}{2}$ b B1
(iv) " $\frac{1}{2} \mathrm{~b} "+\cdots \frac{2}{3}(\mathrm{a}-\mathrm{b}) "$ M1

$$
\frac{2}{3} a-\frac{1}{6} b
$$

$$
\begin{array}{lll}
\text { o.e } & \text { A1 } & 5
\end{array}
$$

(b) $\overrightarrow{M P}=" 2 \mathrm{a} " "-\frac{1}{2} \mathrm{~b}$ " or $\overrightarrow{N P}=\frac{4}{3} \mathrm{a}-\frac{1}{3} \mathrm{~b}$
$\overrightarrow{M P}=3 \overrightarrow{M N}=\frac{3}{2} \overrightarrow{N P}$ or $\overrightarrow{N P}=2 \overrightarrow{M N} \quad$ M1
correct conclusion
A1 3
[NB: Dividing vectors leading to $\overrightarrow{M P}=3 \overrightarrow{M N}=\frac{3}{2} \overrightarrow{N P}$ or $\overrightarrow{N P}=2 \overrightarrow{M N}$ scores M 1 (for $\overrightarrow{M P}$ or $\overrightarrow{N P}$ ) M1 A0]
(f) $\quad \overrightarrow{N P}=\frac{2}{3} \quad$ "(2a- $\left.\frac{1}{2} \mathbf{b}\right) "=2 \overrightarrow{M N}$ M1

1:2
[NB: Dividing vectors leading to $1: 2$ scores M1 A0]

A1 2
10
Total 10 marks
9. NB: Penalise omission of labelling or incorrect labelling ONCE only
(a) $\triangle A B C$ drawn and labelled
(b) (i) $\left(\begin{array}{lll}-1 & -2 & -4 \\ -2 & -4 & -3\end{array}\right)$
(ii) $\quad \Delta A_{1} B_{1} C_{1}$ drawn and labelled

4
(c) $\quad\left(\Delta A_{2} B_{2} C_{2}=\left(\begin{array}{ccc}3 & 4 & 6 \\ -2 & -4 & -3\end{array}\right)\right.$ )
$\Delta A_{2} B_{2} C_{2}$ drawn and labelled
2
(d) (i) Reflection in the line $y=x$
(ii) $\left(\begin{array}{ccc}-2 & -4 & -3 \\ 3 & 4 & 6\end{array}\right)$
(iii) $\Delta A_{3} B_{3} C_{3}$ drawn and labelled
(e)

$$
\mathrm{n}=\binom{0}{2}
$$

B1 1
o.e B2 (-1 eeoo)

B2 (-1 eeoo) ft

B2 (-1 eeoo) ft B1
o.e B2 (-1 eeoo)

B2 (-1 eeoo) 5

B2 (-1 eeoo) 2
14
Total 14 marks
10. NB: Penalise not corrected answers ONCE only
(a) $F G=6$ $\sqrt{20^{2}+6^{2}}$
20.9
OR $\quad A F=7.81$
B1
( $E B=21.5$ )
$E G=\sqrt{\left(21.5^{2}-5^{2}\right.}$
M1
20.9
A1
(b) $\frac{1}{2} \times$ " 20.9 " $\times 10$

M1
104.4, 104.5, 104.6

A1 2
OR $\quad\left(\angle E B G=76.55^{\circ}\right)$
$\frac{1}{2} \times 10 \times$ " 21.5 " $\times \sin " 76.55$ " M1
(c) $\sqrt{5^{2}+20.9^{\prime \prime 2}}$
21.5

M1
A1 2
OR $\quad F B=7.81$
$E B=\sqrt{\left(20^{2}+" 7.81^{12}\right.}$
M1
21.5
(d) "104.4" = $\frac{1}{2} \times " E B " \times " E B " \times \sin \angle A E B$ $\sin \angle A E B=\frac{" 104.4 "}{\frac{1}{2} \times " 461 "}$
$27^{\circ}$
A1 3
OR $\quad \sin \angle E G B=\frac{5}{" 21.5 "}$
o.e
$\angle A E B=2 \times 13.48 "$
M1

M1 DEP
$27^{\circ}$
A1
OR $\quad 12^{2}=" 21.5 "^{2}+" 21.5^{\prime 2}-2 \times 21.5 \times 21.5 \mathrm{x} \cos \angle B E C$
$\therefore \cos \angle B E C=\frac{" 21.5{ }^{\prime \prime}+" 21.5{ }^{\prime 2}-12^{2}}{2 \times " 21.5 " \times " 21.5 "}$
$27^{\circ}$
M1
M1 DEP
A1
(e) $E N=\sqrt{E E B^{\prime 2}-6^{2}}$
( $N$ is the mid-pt of $B C$, say) M1
$\triangle E B C=\frac{1}{2} \times{ }^{\prime \prime} E N " \times 12 \quad$ M1 DEP
Total surface area
$=2 \times\left(\right.$ " $\left.\Delta E B C^{\prime \prime}\right)+2 \times 104.4 "+10 \times 12$
$576.2 \rightarrow 576.6$
M1 DEP
A1 414
OR
$\angle B E C=2 \times 16.2$
M1
$\triangle E B C=\frac{1}{2} \times 21.5^{\prime \prime 2} \times \sin " 32.4 "$
M1 DEP
Total surface area
$=2 \times\left(" \Delta E B C^{\prime \prime}\right)+2 \times 104.4^{\prime \prime}+10 \times 12$
M1 DEP
Total 14 marks
11.
(a) $1.88,2.13,-3.13$
B1, B1, B1

NB: Ordering of the award of the B marks
(b) -1 mark for
straight line segments each point missed
each missed segment
each point not plotted
each point incorrectly plotted
tramlines in 2 segments
very poor curve B3 3
NB: Ordering of the award of the B marks - award all 3 B marks and then deduct, beginning with the $3^{\text {rd }}$ one for any errors.
(c) $\quad-1.66$
B1 ft
-0.21
B1 ft
2.87
B1 ft
$-0.21<x<2.87$
B1 ft

NB: 'ft' on candidates' curve
(d) Rewrite $2 x^{3}-2 x^{2}-11 x-1=0$ as
$x^{3}-x^{2}-5 x=\frac{1}{2}+\frac{1}{2} x \quad$ (ie attempting to isolate $x^{3}-x^{2}-5 x$ )
M1
correctly A1
Draw $y=\frac{1}{2}(1+x)$ ie straight line going
through $(-1,0)$ and $\left(0, \frac{1}{2}\right)$
A1
-1.84, -0.09, 2.93
A1 ft
-0.09
2.93 A1 ft A1ft

Further copies of this publication are available from
Edexcel UK Regional Offices at www.edexcel.org.uk/sfc/feschools/regional/ or International Regional Offices at www.edexcel-international.org/sfc/academic/regional/

For more information on Edexcel qualifications, please visit www.edexcel-international.org/quals Alternatively, you can contact Customer Services at www.edexcel.org.uk/ask or on + 441204770696

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

