UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE O Level

MARK SCHEME for the November 2005 question paper

4024 MATHEMATICS

4024/02 Paper 2 maximum raw mark 100

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 1	Mark Scheme	Syllabus	Paper
	GCE O Level – November 2005	4024	2

1	Nonsense in one part may be used to earn M marks in any other part of the q Throughout accept equivalent complete methods and decimal angles without sign, but degree sign essential if answer in degrees and minutes			
(a)	ABO = 90" with reason	Bi	1	
(b) (i) sin OAB = 6/13 (= 0.4615) or OAB = 27.48 oe seen (leads to OAB = 27.5.) AG	ВІ	1	
3	ii)15	Mi		
	tan 27,5			
	28.8 to 28.9 (cm)	A1	2	
0	ii) 2(their AC)sin27.5 or 2X15cos27.5	M2		
	or EPC =2[90 - 27.5] (*125)			
	and $\sqrt{\{15^2 + 15^2 - 2x 15x 15 \cos(\text{their } 125)\}}$ (M2)			
	26.55 to 26.65 (cm)	Al	3	7
2 (a)	(t =) 2 ½ , 2.33 or better	B2	2	
	After B0, allow B1 for $t = 7/3$ or 2.3 or 3 or for $3t = 7$ seen			
(b)	$x = -2.5 \text{ or } -2\frac{1}{2} \text{ and } y = 17$	B2	2	
	After B0, allow B1 for one value found with no errors	1300		
	or allow M1 for correct method to eliminate one variable			
	(reaching such as $4y = k$, $ky = 68$, $8x = k$ or $kx = -20$)			
(c)	(y+2)(y-2) soi	BI		
	(3y + 2)(y + 2) soi	BI		
	3y + 2 obtained with no errors seen	ВІ	3	
	y -2			1
(d)	Collect terms e.g. $2x + gx = 2f - 3h$	MI	11	1
	Factorise e.g. $x(2+g) = 2f - 3h$	MI		
	2f - 3h	A1	3	10
	2 + g			

	GCE	O Level – November 2005		4	1024	2
3 (a)	(i) (DCA =) 90° (angle in semi	circle)		В1		-1
	(ii) (DAC=) 34° or 124 – their	A .		Bij	4	
	(iii) (CBA =) 124"	(opposite angles of cyclic quad)		BI		
	(iv) (AEB [=ADB]=) 28°	(angles in same segment)		В1	4	
	Lack of reason loses B1 on fir	st occasion only				
(b)	EBD = 28°	(alternate angles) Reason needed		ВІ		
	Deduces BDX or BDA = EBI	0	- 4			
	And hence triangle BDX is isc	osceles	indep	B1	2	
(c)	(ABE =) 62°			B1	1	
(d)	Convincingly shows X is the c	centre of the circle is isosceles, so AX = BX = DX		В1	1	8
4 (a)	Correct, labelled, diagram reports After B0, allow B1 for diagram or labelled diagram and lab	7		B2	2	
	(i) (Median =) 2			BI		
	ii) (Mode =) 1 √ iii) (Mean =) 1.92 or 48/25	oe		BI√ BI	3	
(c)	_k , 0.2 or 20% √ 5k			Ві∕	1	
(d)	<u>k</u> , 0.04 or 4% 25k			В2	2	
	After B0, allow B1 for _k, 0	.02 or 2% or _24 , 0.0384 or 3.84%				

Mark Scheme

Syllabus

A1 2

10

Paper

Page 2

(e) Uses 2x6 cars or total number of cars (48)

_k , 0.25 or 25%

4k

Page		Syllabus	Paper
	GCE O Level – November 2005	4024	2
E (-) ("	Lists & different ways	l nu	
) Lists 5 different ways	B1	
e.g.		2011	
en	[on 4024, (10, 10, 10, 10), (20, 10, 10), (10, 20, 10), (10, 10, 20), (20)	, 20/]	
(ii) Lists 8 different ways or justifies it is 5 ways with 10 cents first + 3 ways with 20 cents first	B1 2	
de di) a = 13	BI	
(0) (1)	b = 21 or 8 + their (i) \(\int \)	A	
	5-21 or 8+ (neir (1))	B2 3	
(ii)	z = x + y oe	Bi i	6
6 (a)	24	B1 1	
	x		
(b)	_24 oe	B1 1	
1977	x + 0.5		
(c)	$24 - 24 = \pm 2$ soi oe, but must contain x in 2 terms	MIA	
	x x+0.5	7	
	Correct method to remove fractions,		
	e.g. $24(x+0.5) - 24x = \pm 2x(x+0.5) \int$ oe	MI	
	(but must have contained x in 2 different denominators)	4	
	Obtain $2x^2 + x - 12 = 0$ AG	A1 3	
(d)	Formula For numerical $p \pm \sqrt{q}$, (not $\pm p$) seen or used,		
	Ť		
	Allow B1 for $p = -1$ and $r = 4$	В1	
	and B1 for $q = 97$ or $\sqrt{q} = 9.84$ soi	B1	
	Complete square Allow B1 for $(x + \frac{1}{4})^2$ or $(x + \frac{1}{4})$ oe soi		
	and B1 for 97/16 or square roots such as 2.46 or 9.84		
	4		
	Final answers Allow B1 for each of 2.212 and -2.712	nww B2 4	
	or allow B1 for both 2.21 and - 2.71 seen		
	or allow B1 for both 2.2122 and -2.7122 see	,	
(c)	Time =24 (~ 10.8)	MI	
1-7	their 2.212		
	10 minutes 50 to 52 seconds	AI 2	

Page 4	Mark Scheme	Syllabus	Paper
	GCE O Level – November 2005	4024	2

	_		
7 (a) (i) ½ π 0.6 ² (= 0.5655) seen	MI		
1.520 to 1.530 (m ²)	Al	2	
(ii) 2 x 2.2(2.5 +3.6) (=26.84) oe soi	MI		
Their 26.84 - their (i) - 1.9 \$\times 0.9 (= 23.604)			
Leading to 23.6 (m ²) AG	A1	2	
(b) (i) Increased area = 23.6 X 1.12 oe (=26.43 or 26.44)	M1		
Number of tiles = their 26.4 indep	MI		-
0.251			
= 422 to 424	A1	3	
(ii) Number of boxes = their 423 (leading to 22)	MI		
20			
Cost = \$ 330 cao	Al	2	
(iii) Division by 120 soi	мі		
_20 x 15 or 100 x 15 soi	MI		
120 120			
\$ 2.5	Al	3	12

Page 5	Mark Scheme	Syllabus	Paper
	GCE O Level – November 2005	4024	2

B N	Nonsense in one part may be used to earn M marks in any other part of the qui	estion		
. 1	Throughout accept equivalent complete methods and decimal angles without	legree		
S	ign, but degree sign essential if answer is given in degrees and minutes			
(a) (i) 2	92°	ВІ	1	
(ii) 7	$2^2 + 60^2 \pm 2 \times 72 \times 60 \cos 75$ oe soi	MI		
C	orrect formula ,simplification and a square root taken, seen or			
	implied by subsequent values dep	MI		1
8	0.85 to 80.95 (m)	A2	4	
A	fter A0, allow A1 for 6547 or 11020 or 104.9 seen, (dep on first M1)			
(iii) <u>si</u>	<u>in B</u> = <u>sin 75</u> soi	MI		
	60 their (ii)			
si	in ABC = 60 sin 75 (= 0.7162)	MI		
	their (ii)			
4.	5.70 to 45.80°	A1	3	
(iv) 1	57.70 to 158 or (their (i) + their (iii) - 180)	ві	1	
(b) (l	Height of kite =) 72 tan 24 (=32.05)	MI		
ta	$an \alpha = their height$ (= 0.534)	MI		
	60			
2	8.05 to 28.15°	Al	3	1
S	ome possible answers			

Page 6	Mark Scheme	Syllabus	Paper
	GCE O Level – November 2005	4024	2

9 (a)	$\sqrt{(5^2 + 12^2)}$ oe seen [leading to 13 AG]		ВІ	1	
(b) (i)	π x 5 x 13 soi (=65π = 204.2)		МІ		
	$2 \pi 5^{2}$ soi $(-50\pi - 157.1)$	indep	МІ		
	Their 65π + their 50π + $k\pi$ 5^{\pm} where k = integer (provided all terms are areas)	indep	МІ		
	361.0 to 362.0 (cm ²)		Al	4	
(ii)	$\frac{1}{2} \pi 5^2 \times 12$ soi (= $100\pi = 314.2$)		MI		
	$\frac{3}{3}\pi$ 5° soi (= 250 π /3 = 261.8)	indep	MI		
	575.5 to 576.5 (cm³)		A1	3	
(c)	Figs { $\pi 1.5^2 \text{ λ2}$ } (= fig{ $9\pi /2$ } = fig 14.14)		МІ		
	Correct conversion, (using 1 000 000)	indep	MI		
	Fig their 14.14 their 576	indep	MI		
	24 500 to 24 600		Al	4	12

Page 7	Mark Scheme	Syllabus	Paper
	GCE O Level – November 2005	4024	2

10				
(a) (i) $EF = x - 2$	1		- 1	
(ii) BC = 100/x			100	
(iii) FG = [100/x] - 5 or their (ii) - 5 ✓				
All three correct	B2	2	100	
After B0, allow B1 for any two correct √ answers				
(b) $y = (x - 2)(100 - 5)$ convincingly leading to $y = 110 - 5x - 200$ AG	BI	1		
x x				
(c) 40(.0)	BI	1		
(d) All 7 points plotted √ (P1 for at least 5 of these √)	P2			
Smooth curve, not grossly thick, through all plotted points, of which at	CI			
least 5 are correct	CI	3		
(e) Drawing tangent at $x = 8$ and estimating change in y , ignoring sign change in x	MI			
- 1.60 to - 2.00 [Ignore support from Calculus]	Al	2		
(f) (i) {4.65 to 4.80} to {8.45 to 8.55}	R2	2		
After R0, allow R1 for either value				
(ii) 6.20 to 6.40	XI	1	12	

Page 8	Mark Scheme	Syllabus	Paper
	GCE O Level – November 2005	4024	2

			1
1			
Accept such as b + - a for b - a throughout.			
Only expressions linear in a and/or b can score.	1		1
(a) (i) (DO -) a	B1		
(ii) (AB =) b - a	ВІ		
~ ~			1
(iii) (DB =) a + b	BI	3	
(b) Triangle OAB is equilateral, so length OA = OB = AB	В1	1	
(c) (i) (a) $(\overrightarrow{AX} =) \underbrace{b}_{3b}$ (b) $(\overrightarrow{YX} =) \underbrace{3b}_{3b}$	BI		
(b) (YX =) 3 b	В!	2	
(ii) Points lie on a straight line oe		1	
\rightarrow			
(d) (XZ =) - 3a €	BI	1	
(e) $\overrightarrow{YZ} = 3b - 3a$ or $\overrightarrow{ZY} = 3a - 3b$	В1		
Deduces XZ = YX = YZ,	1		
So sides are equal and hence triangle equilateral dep	В1	2	
Alternative: States XZ parallel OA and YX parallel OB so X 60°	(BI)		
And length XZ = length YX so equilateral dep	(B1)		
(f) 1	Ml		
$\frac{1}{9}$			
After 0/2, allow B1 for 1 to 9, 1:9, 9, $\left(\frac{1}{3}\right)^2$ or $\left(\frac{a}{3a}\right)^2$ seen	B2	2	12
After 0/2, allow B1 for 1 to 9, 1:9, 9, $\left(\frac{1}{3}\right)$ or $\left(\frac{a}{3a}\right)$ seen	B2	2	