MARK SCHEME for the October/November 2007 question paper

4024 MATHEMATICS

4024/02

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2007	4024	02

Abbreviations

- cao correct answer only
- oe or equivalent
- soi seen or implied
- www without wrong working

Page 3	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2007	4024	02

Question Number		(1	Sub part)	Comments
1				
	- 200		nark	
	(a) $\tan C\widehat{A}B = \frac{200}{65}$ oe	N	11	
	$C\widehat{A}B = 72.(0)^{\circ}$ accept 71.95 to 72.05			
			1 2)	
			"	
	750			
	(b) (i) Figs $\frac{750}{5}$ soi		11	
	0.15 h oe			
	23 05 or 22 56 + their 00 09 \checkmark		81	Their 00 09 is whatever they
		(3	3)	think the time is, written in 24 hr. clock style.
	(ii) $\cos P\hat{R}S = \frac{300}{750}$ or $\sin P\hat{S}R = \frac{300}{750}$	N	/ 1	
			.	Expect these angles to be
	$P\hat{R}S = 66.4^{\circ} \text{ or } P\hat{S}R = 23.6^{\circ}$	A	1	identified, possibly by the final answer.
	(Bearing of S from $R = $) 113.6, accept 114,			(Degree signs optional)
	or 180 – their $P\hat{R}S$ or 90 + their $P\hat{S}R$		31	
		6	3)	
		(8	8)	
2	(a) (i) 2.71		32	
	After B0, 2.709, or their 2.709 correctly rounde or 2.7(0) www	and the second sec	2)	
	0.2.7(0) ****		-)	
	(ii) Final ans (b=) $(\pm)\sqrt{x^2-2ax}$ oe			
	After B0, $x - a = \sqrt{a^2 + b^2}$ soi	M1 B	33	e.g. $(\pm)\sqrt{(x-a)^2-a^2}$
	After B0, $x - a = \sqrt{a} + b$ sol	IVI I		
	and $(x-a)^2 = a^2 + b^2$ further	M1		
		(.	3)	
	(b) (i) $8x - 27$ oe	п	32	
	After B0, $5x$ or $8x + k$ seen	RI /	2)	
	(ii) Their $8x - 27 < 300$ (provided it is an expression in	r)		
	(ii) Then $3x = 27 < 300$ (provided it is an expression in $x < 40.875$ (accept 40.9 or 41)	N	M1	
	After M0, Final ans. 40.875 (accept 40.9 or 41)		A1 (2)	
			~,	
	(iii) 40 or their (b)(ii) / rounded down to the next whol	e		
	number.		31	
			1) 10)	

Page 4	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2007	4024	02

Question Number			Sub (part) mark	Comments
3	(a) (i) 56	<u></u>	B1	
	(ii) 68 or 180 - $2 \times \text{their}(i) \checkmark$		B1/ (2)	
	(b) (i) $W\hat{X}V = Y\hat{X}Z$ (vertically opposite) or $V\hat{W}X = X\hat{Z}Y$ ($WV // YZ$) stated		B1	Reason not required for 1 st B1 For the 2 nd B1 accept (i) 3 pairs of equal angles
	convincingly deduces triangles (VWX and YZX) equiangular	are	B1 (2)	stated, with one of the above reasons given as appropriate. (ii) 2 pairs of equal angles, with reason and conclusion (iii) A solution using the ratios of corresponding sides, provided that the equal angle used is justified, and that similarity has not been
	(ii) $\frac{YZ}{25} = \frac{160}{40}$ oe soi		М1	assumed.
	(YZ =) 100 cao		A1 (2) (6)	
4	(a) Final ans. \$ 13.44 or 1344 c		B1	
			(1)	
	(b) $\frac{35-28}{28} \times (100)$ oe		Ml	
	25(%)		A1	
	After M0, use of figs $\frac{35}{28}$ soi	SC1		
			(2)	
	(c) 5(%)		B2	
	After B0 figs $\frac{35 \times 1200 - 399}{35 \times 1200}$ oe	M1	(2)	
	(d) (\$) 4		B3	
	After B0 \div by 115 \times by 100 indep.	M1 M1		
	After B0, M0 115 seen	SC1	<i>(3)</i> (8)	

Page 5	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2007	4024	02

Question Number		Sub (part)		
5	Nonsense in one part may be used to earn M marks in any other part of the question. Throughout, accept equivalent complete methods and decimal angles without degree sign, but degree sign essential if answer in degrees and minutes.	mark	ð an - 1997 - 1997 - 1997 - 1997 - 1 997 - 1997 -	
	(a) (i) $(AD^2 =)24^2 + 16^2 \pm 2 \times 24 \times 16 \cos 112$ soi $(AD =)\sqrt{24^2 + 16^2 - 2 \times 24 \times 16 \cos 112} (= \sqrt{1119.697})$	M1 M1		
	(<i>AD</i> =) 33.5 (from 33.46, accept 33.45 to 33.55)	A2		
	After A0 and at least M1, 1119.697 seen or $(AD =)23.3$ (from $\sqrt{544.30}$) A1 (anw 2)	(4)		
	(ii) $\frac{\sin(\hat{BCD})}{16} = \frac{\sin(180 - 112)}{20}$ oe	мı		
	$\sin B\hat{C}D = \frac{16\sin(180 - 112)}{20} \ (=0.7417)$	М1		
	$B\hat{C}D = 47.9$ (from 47.88), accept 47.85 to 47.95 (anw 2)	A1 (3)		
	(iii) $\frac{1}{2} \times 24 \times 16 \sin 112$ oe	MI		
	$= 178 (cm^2)$	A1 (2)		
	(b) 60 (k) cao	B1 (1)		
		(10)		

Page 6	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2007	4024	02

Question Number		Sub (part) mark	Comments
6		B1	For diameter 5, only method marks are available throughout.
	(a)(i) 6	(1)	
	(ii) (a) π (their 15) ²	MI	
	707 (cm ²) accept 706.5 to 707.5	A1 (2)	
	(b) $\frac{1}{6}(\pi 15^2 - 7\pi 5^2)$ or $\frac{1}{6}(\text{their}(a) - \text{their}(\pi 5^2))$		
	or $\frac{theirAOB}{360}$ their $\pi 15^2 - \frac{theirAOB}{360}$ their $\pi 5^2 - their \pi 5^2$	M1	
	$= 26.2 \text{ (cm}^2) \text{ accept } 26.15 \text{ to } 26.25$	Al	
		(2)	
	(b) (i) 60(°)	B1	Accept radian form
		(1)	
	(ii) $\frac{their(i)}{360} \times 2\pi5$	M1	Expressions may be constructe using radians.
	$\frac{their(i)}{360} \times 2\pi (their 15)$	M1	
	$\frac{their(i)}{360} \times 2\pi5 + \frac{their(i)}{360} \times 2\pi(their15) + 2\pi5 \text{ oe indep}$	MI	
	= 52.4 (cm) (accept 52.35 to 52.45)	A1	
	After MO, 2π5 seen SC1		i.e. if no other marks are scored, a correct circumference
	(anw 2)	(4)	of a small circle gets 1 mark.
		(10)	

Page 7	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2007	4024	02

Question Number		Sub (part)	Comments
		mark	
7	(a)(i) $\frac{k}{3+2+1} \times 75 \ k = 1,2 \ or \ 3.$	M1	
	= 25 (litres)	A1	
		(2)	
	(ii) e.g. 40, 35, 36 (cents/litre) seen		
	Final ans. 25 (litre bag)	M1 A1	
	(anw 0)	(2)	
	(b)(i) $\frac{1}{3}\pi 10^2 \times 24$ soi	MI	
	$-\frac{1}{3}\pi 5^2 \times 12 \text{oe e.g. } \frac{7}{8}(\frac{1}{3}\pi 10^2 \times 24) \qquad \text{a further}$		
	$\begin{array}{ccc}3 & 8 & 3\\2199.1 \text{ or their } \underline{\text{volume}} \text{ in } \text{cm}^3 \div 10^3 & \text{ indep}\end{array}$	M1	
		M1	
	2.20 (litres) (accept 2.195 to 2.205) cao	A1	
	(anw 3)	(4)	
	(ii) $\frac{75}{theirb(i)}$ soi	MI	
	theirb(i)		
	34 or their (ii) rounded down \checkmark	AL	
		(2)	
	(iii) Use of (ratio of vols. =) 10^3 : 5^3 seen or use of $\frac{1}{3}\pi 5^2 \times 12 - \frac{1}{3}\pi 2.5^2 \times 6$ (= 274.89)		
	3 3	MI	
	272 or their (b)(ii) \times 8/or $\frac{75}{their 2.199} \times$ 8/rounded down		
	inetr2.199	A1	
		(2)	
		(12)	
		(12)	

Page 8	
--------	--

uestion umber		Sub (part) mark	Comments
8 Co If j plo Bo plo Lin <u>Pe</u> Wi Int No (a (b) S	indone inaccuracies of up to 1 mm in plotting and drawing. plots are not visible, allow P marks if curve passes within 1 mm of correct of. and P and dep C marks can be recovered following a grossly wrong plot if the of is ignored and the curve passes within 1 mm of the correct point. making deducted from P and C marks only: rong scale(s) -1 once. terchanged axes: no penalty, retach tolerances to 2 mm. making deducted from P and C marks only: rong scale(s) -1 once. terchanged axes: no penalty created tolerances to 2 mm. making deducted from P and C marks only: rong scale(s) -1 once. terchanged axes: no penalty created tolerances to 2 mm. making deducted from P and C marks only: nor -2 After B0, correct factors of their quadratic or their $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ M1 o)(i) All 6 given points plotted. 4 correct points P1 smooth curve, not grossly thick, through all plotted points, dep on P1 (ii) Curve drawn to (12,0) or \sqrt{from} (a) (iii) 45 (m) or 45 ± 0.5 if read from the graph. (iv) Using $y = 30$ (e.g. 0.6 to 0.8 and/or 9.3 to 9.5 seen) (distance travelled =) 8.5 to 8.9 (m) e)(i) ($p = 149$ (ii)(a) 49 (m) cao (b) 5 (m) cao		Ignore drawn to negative x Follow through only if the shape remains reasonably parabolic.

Page 9	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2007	4024	02

Question Number		Sub (part) mark	Comments
9	$(\mathbf{a}) \begin{pmatrix} 0 \\ -2 \end{pmatrix}$	B1 (1)	
	(b)(i)(a) - b	B1	
	(b) $2(b-a) \text{ or } 2b-2a$	B1	
	(c) $2a \text{ or their}(a) + 3a + b - a \checkmark$	ві	Must be simplified.
	(d) a or $-2b + 3a + \text{their}(b) \checkmark$	BIV (4)	Must be simplified
	(ii)(a) Trapezium dep on the ans. a in (i)(d) Two sides (AD, BC) // also dep on the ans. a in (i)(d)	B1 B1 (2)	
	(b) 1:2:3 cao independent(c) In this part give -1 once for omission of appropriate reason.	B1 (1)	
	(i) $(C\widehat{E}A =)$ 146 (°) : Angle in the same segment.	BI	Or opposite angles of cyclic quads AOCF and AECF
	(ii) ($C\widehat{B}A=$) 73 (°) : Angle at the centre twice angle at circumf.	Bl	
	(iii) ($C\hat{F}A =$) 34 (°) : Angles in opposite segments supplementary	Bl	May have been justified in (i)
	(iv) $(D\hat{C}F =)$ 73 (°) or 180 – (their(ii) + their(iii)) $$ Opposite angles in a cyclic quad and/or angle sum of a triangle. (anw 3)	B1√ (4) (12)	
	(univ S)	()	

Page 10	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2007	4024	02

Question Number		Sub (part)	Comments
		mark	
10	The general instructions given in Q8 apply here.		
	(a)(i) 4×75 + 56×125 + 84×175 + 76×225 + 36×275 + 4×325 condone consistent use of other value in each interval, and one error or omission	MI	
	50300 (g) oe cao	Al	
	(ii) 193 (g) (accept 192.5 to 193.5) or their (i) + 260 /	в1 🗸	P - 16at
	After M0 in (a), 50300 soi SC1	(3) B1	E.g. if the answer only is given here, the mark is B1 + SC1.
	(b) (i) (0 4 60) 144 220 256 (260)	(1)	
	(ii) All 7 points plotted \checkmark	P2/	·
	5 points plotted P1		
	Smooth curve, not grossly thick, through all plotted points, dep on P1 and ogive shape	C1 (3)	
	(iii)(a) 190.0 to 197.5 (g) clearly intended as the answer.	B1 (1)	
	(b) Intention to read graph at 65 and 195 e.g. 152.5 to 157.5 and 230 to 235 seen	M1	
	(1.Q. range =) 72.5 to 82.5 (g)	A1 (2)	1
	(c) 260 - 144 (table value) (= 116) 5 (sacks)	M1 A1 (2)	
	Jacks	(12)	

Page 11	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2007	4024	02

Question Number			Sub (part) mark	Comments
11	(a)(i) $\sqrt{(2-4)^2 + (9-6)^2}$ oe 3.61 or better (3.605) (ii) $3x + 2y = 24$ or any 3 term equivalent After B0, $m = \frac{-3}{2}$ or $c = 12$ soi		M1 A1 (2) B2	e.g. $y = -\frac{3}{2}x + 12$
	or their line through (2,9) or (4,6) (b)(i) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	B1	(2) B1	
	(ii) Reflection in the line $y = x$		(1) M1 A1 (2)	And no other transformation stated.
	(iii)(a) $\begin{pmatrix} -3 \\ -3 \end{pmatrix}$ (b) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} h \\ k \end{pmatrix} + \begin{pmatrix} -3 \\ -3 \end{pmatrix}$ seen	dep on T1	B1 (1)	
	(c) $(h,k) = (-k-3, h-3)$ oe soi		в1 (1) M1	Method mark must be earned
	h = 0 and $k = -3(d) (0,-3) or (their h, their k) \checkmark$		A1 (2) B1∕	here. Allow either.
			(1) (12)	