Centre Number	Candidate Number	Name
UNIVERS		E INTERNATIONAL EXAMINATIONS
		of Education Ordinary Level
MATHEMATICS (SYLLABUS D)		4024/01
MAIHEMAII	C3(STLLABUSD)	4024/01
	CS (STLLABUS D)	4024/01
Paper 1	CS (STELABOS D)	October/November 2006
	CS (STELABUS D)	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use a pencil for any diagrams or graphs.Do not use staples, paper clips, highlighters, glue or correction fluid.

Additional Materials: Geometrical instruments

Answer all questions.

If working is needed for any question, it must be shown in the space below that question. Omission of essential working will result in loss of marks.

NEITHER ELECTRONIC CALCULATORS NOR MATHEMATICAL TABLES MAY BE USED IN THIS PAPER.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

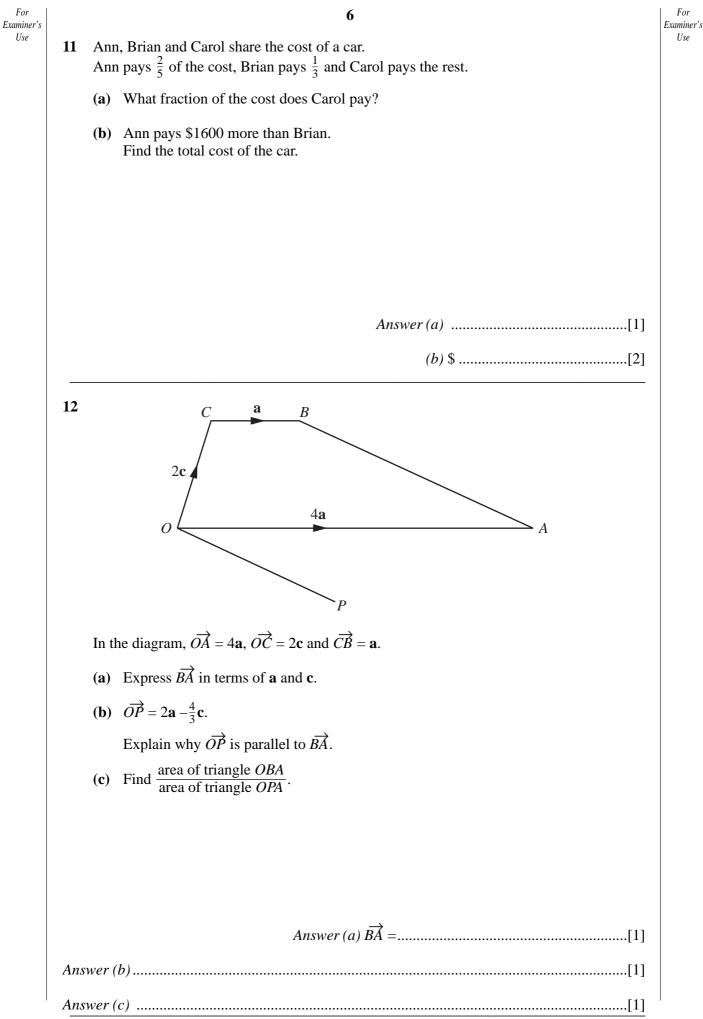
For Examiner's Use

	2						
	NEITHER ELECTRONIC CALCULATORS NOR MATHEMATICAL TABLES MAY BE USED IN THIS PAPER						
1	Evaluate						
	(a) $3+2(4-5)$,						
	(b) $1\frac{1}{3} \div 2\frac{1}{2}$.						
	Answer(a)						
	<i>(b)</i>						
2	(a) An empty tin has a mass of 330 g.When filled with powder, the total mass is 2.10 kg.Find the mass, in kilograms, of the powder.						
	(b) Express 2.45 hours in minutes.						
	(b) Express 2.45 nours in minutes.						
	(b) Express 2.45 nours in minutes.						
	(b) Express 2.45 nours in minutes.						
	(b) Express 2.45 nours in minutes.						
	(b) Express 2.45 nours in minutes.						
	(b) Express 2.45 hours in minutes. <i>Answer(a)</i> kg						
3	Answer(a)kg						
3	<i>Answer(a)</i> kg (<i>b</i>)minutes						
3	(a) Simplify $25x^2 \div 5x^{-4}$.						
3	(a) Simplify $25x^2 \div 5x^{-4}$.						
3	(a) Simplify $25x^2 \div 5x^{-4}$.						
3	(a) Simplify $25x^2 \div 5x^{-4}$.						
3	(a) Simplify $25x^2 \div 5x^{-4}$.						
3	(a) Simplify $25x^2 \div 5x^{-4}$.						

	3
4	In an examination, Alan obtained 32 out of 40 marks. In another examination Ber obtained $\frac{5}{8}$ of the total marks.
	Express the mark of each candidate as a percentage.
	Answer Alan% [1]
	Ben% [1]
5	(a) Write the following numbers in order of size, starting with the smallest.
	$0.7, 0.7^2, \frac{7}{11}, \frac{7}{9}.$
	0.7, 0.7, 11, 9
	Answer(a) ,
	(b) In a school election, John received 220 votes.
	This was 55% of the total number of votes. Find the total number of votes.
	Answer(b)[1
6	The temperature at the bottom of a mountain was 8° C. The temperature at the top was -26° C.
	Find
	(a) the difference between the two temperatures,
	(b) the mean of the two temperatures.
	Answer(a)°C [1

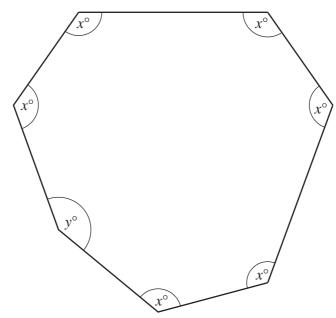
7

- (a) Find the fraction which is exactly halfway between $\frac{5}{9}$ and $\frac{8}{9}$.
 - (b) Estimate the value of $\sqrt{5000}$, giving your answer correct to one significant figure.
 - (c) Evaluate $3^0 \times 4^{\frac{3}{2}}$.


Answer (a)	[1]
11.000000000000000000000000000000000000		- I

- *(b)*[1]
 - *(c)*[1]
- 8 Written as the product of its prime factors, $360 = 2^3 \times 3^2 \times 5$.
 - (a) Write 108 as the product of its prime factors.
 - (b) Find the lowest common multiple of 108 and 360. Give your answer as the product of its prime factors.
 - (c) Find the smallest positive integer k such that 360 k is a cube number.

Answer (a)	108 =	 	 	.[1]
(1)				F 4 3


- *(b)*[1]
- $(c) k = \dots [1]$

				5			
9	(a) So	lve _7 ≤	$\leq 3x - 4 < 2.$				
	(b) W1	ite down a	all the integers w	hich satisfy -	$-7 \le 3x - 4 < 2$	2.	
				Ans	swer (a)	$x < \dots$	[2
					<i>(b)</i>		[1
10	The distance from the Earth to the Sun is <i>e</i> kilometres, where $e = 1.5 \times 10^8$. The distance from the Sun to Mercury is <i>m</i> kilometres, where $m = 6 \times 10^7$.						
	The dis	ance from	i the Sull to Merc	cury is <i>m</i> knome		- 0 / 10 .	
			<i>n</i> as the ratio of tw				
Ear	(a) Ex(b)						Mercury
Ear	(a) Ex(b)	press e : n	n as the ratio of tw	wo integers in i	ts simplest forr Sun	n.	Mercury
Ear	(a) Ex(b)	press e : n		wo integers in i	ts simplest forr Sun		•
Ear	(a) Ex (b) Th Th Th the Fir	press <i>e</i> : <i>n</i> e diagram Sun betw d the dista	<i>n</i> as the ratio of tw $ 1.5 \times 10^8$ km a shows when the veen the Earth and ance from the Ea	n E Earth, the Sun d Mercury. rth to Mercury.	s simplest forr	n. — 6 × 10 ⁷ kn	• n►
Ear	(a) Ex (b) Th Th Th the Fir	press <i>e</i> : <i>n</i> e diagram Sun betw d the dista	<i>n</i> as the ratio of tw $ 1.5 \times 10^8 \text{ km}$ a shows when the veen the Earth and	n E Earth, the Sun d Mercury. rth to Mercury.	s simplest forr	n. — 6 × 10 ⁷ kn	• n►
Ear	(a) Ex (b) Th Th Th the Fir	press <i>e</i> : <i>n</i> e diagram Sun betw d the dista	<i>n</i> as the ratio of tw $ 1.5 \times 10^8$ km a shows when the veen the Earth and ance from the Ea	n E Earth, the Sun d Mercury. rth to Mercury.	s simplest forr	n. — 6 × 10 ⁷ kn	• n►
Ear	(a) Ex (b) Th Th Th the Fir	press <i>e</i> : <i>n</i> e diagram Sun betw d the dista	<i>n</i> as the ratio of tw $ 1.5 \times 10^8$ km a shows when the veen the Earth and ance from the Ea	n E Earth, the Sun d Mercury. rth to Mercury.	s simplest forr	n. — 6 × 10 ⁷ kn	• n►
Ear	(a) Ex (b) Th Th Th the Fir	press <i>e</i> : <i>n</i> e diagram Sun betw d the dista	<i>n</i> as the ratio of tw $ 1.5 \times 10^8$ km a shows when the veen the Earth and ance from the Ea	n E Earth, the Sun d Mercury. rth to Mercury.	s simplest forr	n. — 6 × 10 ⁷ kn	• n►
Ear	(a) Ex (b) Th Th Th the Fir	press <i>e</i> : <i>n</i> e diagram Sun betw d the dista	<i>n</i> as the ratio of tw $ 1.5 \times 10^8$ km a shows when the veen the Earth and ance from the Ea	n E Earth, the Sun d Mercury. rth to Mercury.	s simplest forr	n. — 6 × 10 ⁷ kn	• n►
Ear	(a) Ex (b) Th Th Th the Fir	press <i>e</i> : <i>n</i> e diagram Sun betw d the dista	<i>n</i> as the ratio of tw $ 1.5 \times 10^8$ km a shows when the veen the Earth and ance from the Ea	n E Earth, the Sun d Mercury. rth to Mercury.	s simplest forr	n. — 6 × 10 ⁷ kn	• n►
Ear	(a) Ex (b) Th Th Th the Fir	press <i>e</i> : <i>n</i> e diagram Sun betw d the dista	<i>n</i> as the ratio of tw $ 1.5 \times 10^8$ km a shows when the veen the Earth and ance from the Ea	n E Earth, the Sun d Mercury. rth to Mercury.	s simplest forr	n. — 6 × 10 ⁷ kn	• n►
Ear	(a) Ex (b) Th Th Th the Fir	press <i>e</i> : <i>n</i> e diagram Sun betw d the dista	<i>n</i> as the ratio of tw $ 1.5 \times 10^8$ km a shows when the veen the Earth and ance from the Ea	n Earth, the Sun d Mercury. rth to Mercury. form.	s simplest forr	n. — 6 × 10 ⁷ kn are in a straiş	n — — – ght line, wit
Ear	(a) Ex (b) Th Th Th the Fir	press <i>e</i> : <i>n</i> e diagram Sun betw d the dista	<i>n</i> as the ratio of tw $ 1.5 \times 10^8$ km a shows when the veen the Earth and ance from the Ea	n Earth, the Sun d Mercury. rth to Mercury. form.	swer (<i>a</i>)	n. — 6 × 10 ⁷ kn are in a straiş	n — — – ght line, with

[1]

13 The 7 sided polygon in the diagram has 6 angles of x° and one of y° .

- (a) Draw the line of symmetry on the diagram.
- (b) If y = 126, calculate the value of x.

For

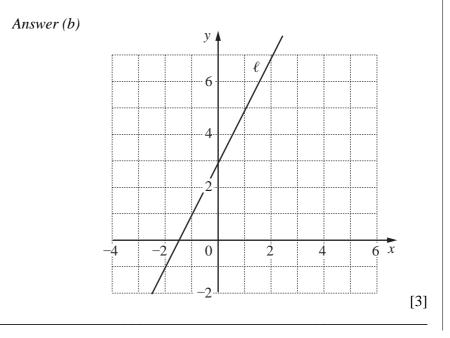
Examiner's

Use

 metre per second. (a) Complete the two statements in the answer space. (b) Calculate the greatest possible time the race could have taken. (b) Calculate the greatest possible time the race could have taken. (c) Calculate the greatest possible time the race could have taken. 		8						
(b) Calculate the greatest possible time the race could have taken. $Answer(a) \dots \leq distance < \dots \\ \dots \leq speed < \dots \\ [2]$ $(b) \dots \leq speed < \dots \\ [2]$ $(b) \dots \leq speed < \dots \\ [2]$ $(b) \dots \\ (b) \dots \\ $	14	The distance is given correct to the nearest 100 m and the speed correct to the nearest						
Answer (a) \leq distance $<$		(a) Complete the two statements in the answer space.						
$= \frac{15}{3} \text{ (a) The matrix } \mathbf{M} \text{ satisfies the equation} $ $3\mathbf{M} + 4 \begin{pmatrix} 2 & -1 \\ 3 & 0 \end{pmatrix} = \mathbf{M}.$ Find \mathbf{M} , expressing it in the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}.$		(b) Calculate the greatest possible time the race could have taken.						
$(b) \dots (c) = 12$ (b)								
$= \frac{15}{3} \text{ (a) The matrix } \mathbf{M} \text{ satisfies the equation} \\ 3\mathbf{M} + 4 \begin{pmatrix} 2 & -1 \\ 3 & 0 \end{pmatrix} = \mathbf{M}. \\ \text{Find } \mathbf{M}, \text{ expressing it in the form } \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$								
$= \frac{15}{3} \text{ (a) The matrix } \mathbf{M} \text{ satisfies the equation} \\ 3\mathbf{M} + 4 \begin{pmatrix} 2 & -1 \\ 3 & 0 \end{pmatrix} = \mathbf{M}. \\ \text{Find } \mathbf{M}, \text{ expressing it in the form } \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$								
$= \frac{15}{3} \text{ (a) The matrix } \mathbf{M} \text{ satisfies the equation} \\ 3\mathbf{M} + 4 \begin{pmatrix} 2 & -1 \\ 3 & 0 \end{pmatrix} = \mathbf{M}. \\ \text{Find } \mathbf{M}, \text{ expressing it in the form } \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$								
(b)seconds [1] 15 (a) The matrix M satisfies the equation $3\mathbf{M} + 4\begin{pmatrix} 2 & -1 \\ 3 & 0 \end{pmatrix} = \mathbf{M}.$ Find M , expressing it in the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.		Answer (a) $\ldots \leq distance < \ldots$						
15 (a) The matrix M satisfies the equation $3\mathbf{M} + 4 \begin{pmatrix} 2 & -1 \\ 3 & 0 \end{pmatrix} = \mathbf{M}.$ Find M , expressing it in the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.		≤ speed <[2]						
$3\mathbf{M} + 4 \begin{pmatrix} 2 & -1 \\ 3 & 0 \end{pmatrix} = \mathbf{M}.$ Find M , expressing it in the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.		<i>(b)</i> seconds [1]						
	15	$3\mathbf{M} + 4 \begin{pmatrix} 2 & -1 \\ 3 & 0 \end{pmatrix} = \mathbf{M}.$ Find M , expressing it in the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.						
		$\langle \rangle$						
Answer (a) $\begin{pmatrix} & \end{pmatrix}$ [2]		Answer (a) $\begin{pmatrix} & \\ & \end{pmatrix}$ [2]						
Answer (a) $\begin{pmatrix} & \\ & \end{pmatrix}$ [2] (b) $\begin{pmatrix} & \\ & \end{pmatrix}$ [2]								

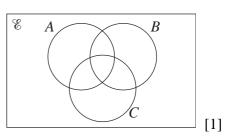
- **16** (a) Given that $f(x) = x^2 2px + 3$, find
 - (i) f(-2), giving your answer in terms of p,
 - (ii) the value of p when f(-2) = f(0).
 - (b) Given that $g(y) = y^2 1$, find g(a 1). Give your answer in its simplest form.

- Answer (a) (i) $f(-2) = \dots [1]$
 - (ii) *p* =[1]

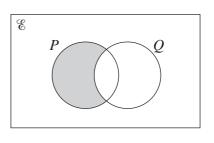

(*b*)
$$g(a-1) = \dots [2]$$

17 The line ℓ is drawn on the grid in the answer space.

- (a) Write down the equation of the line ℓ .
- (b) On the grid,
 - (i) draw and label the lines x = 1, y = 3 and x + y = 2,
 - (ii) shade the region which satisfies the three inequalities

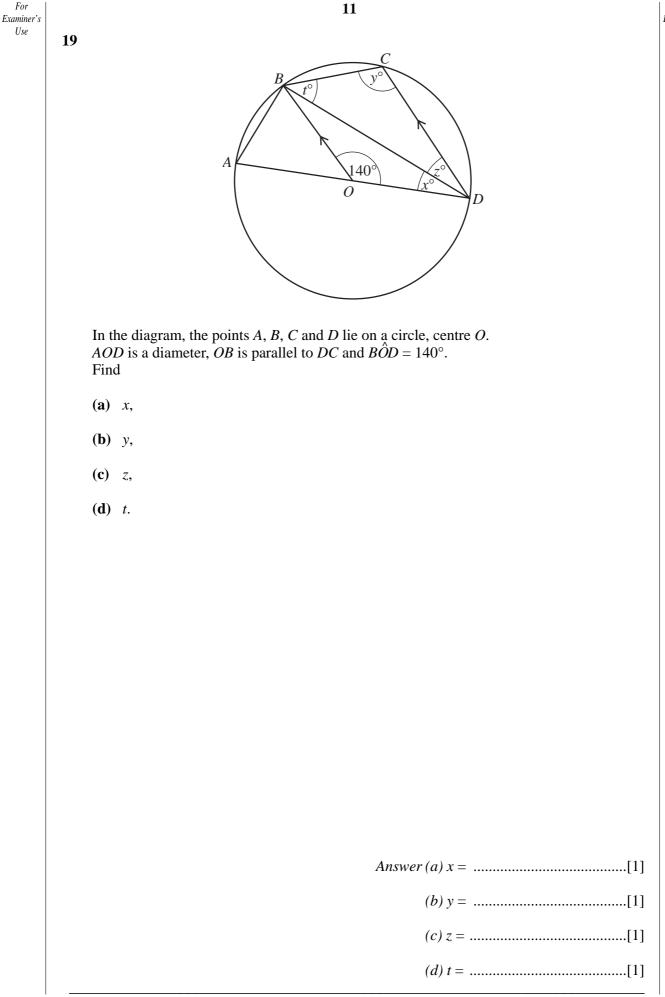

 $x \ge 1$, $y \le 3$ and $x + y \ge 2$.

Answer(a)[1]

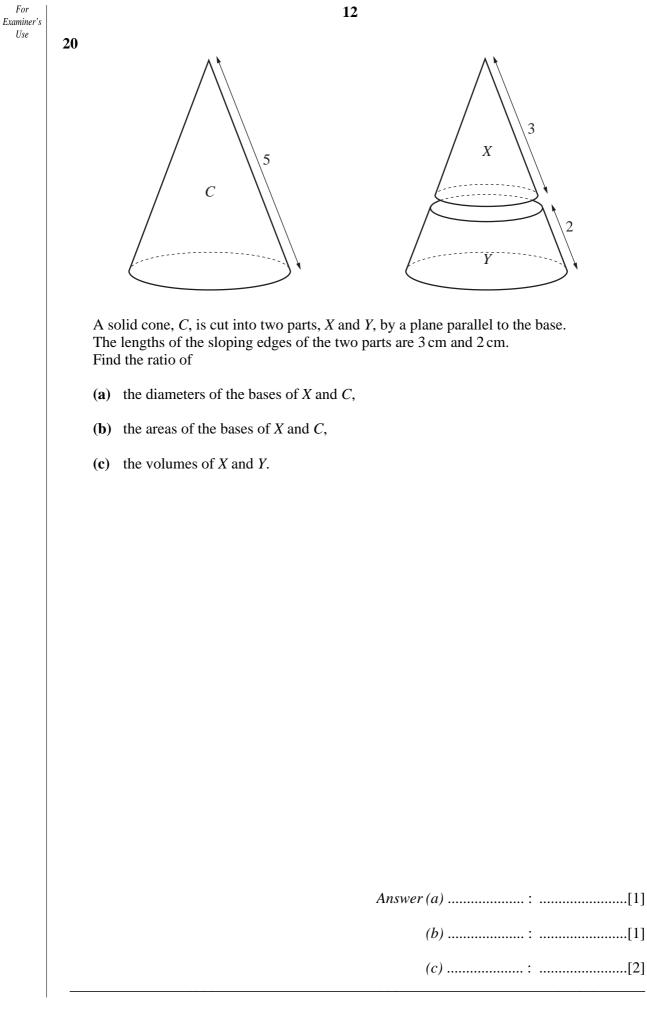


8 (a) On the Venn diagram in the answer space, shade the set $A \cup (B \cap C)$.

Answer (a)

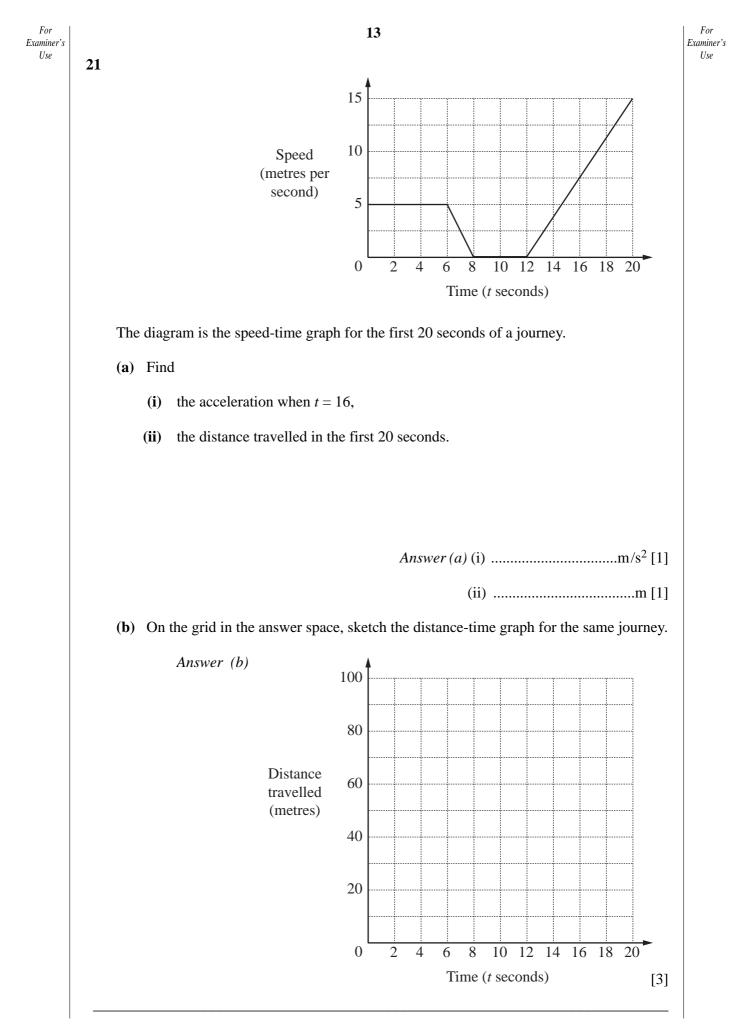

(b) Express in set notation the subset shaded in the Venn diagram.

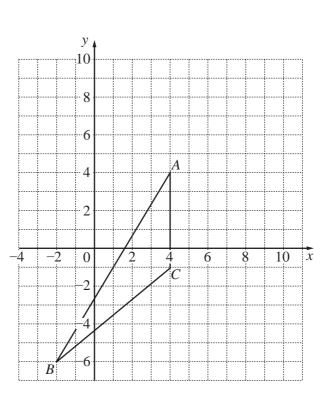
Answer(*b*)[1]


 (c) In a class of 36 students, 25 study History, 20 study Geography and 4 study neither History nor Geography.
 Find how many students study both History and Geography.

Answer(*c*).....[2]

For

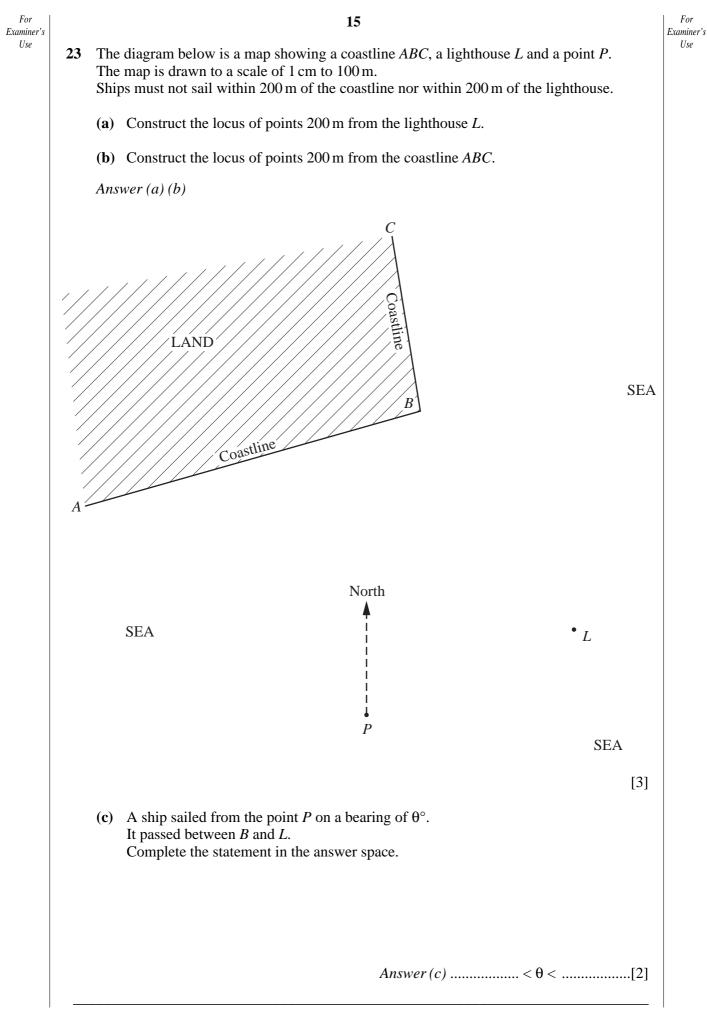

Use

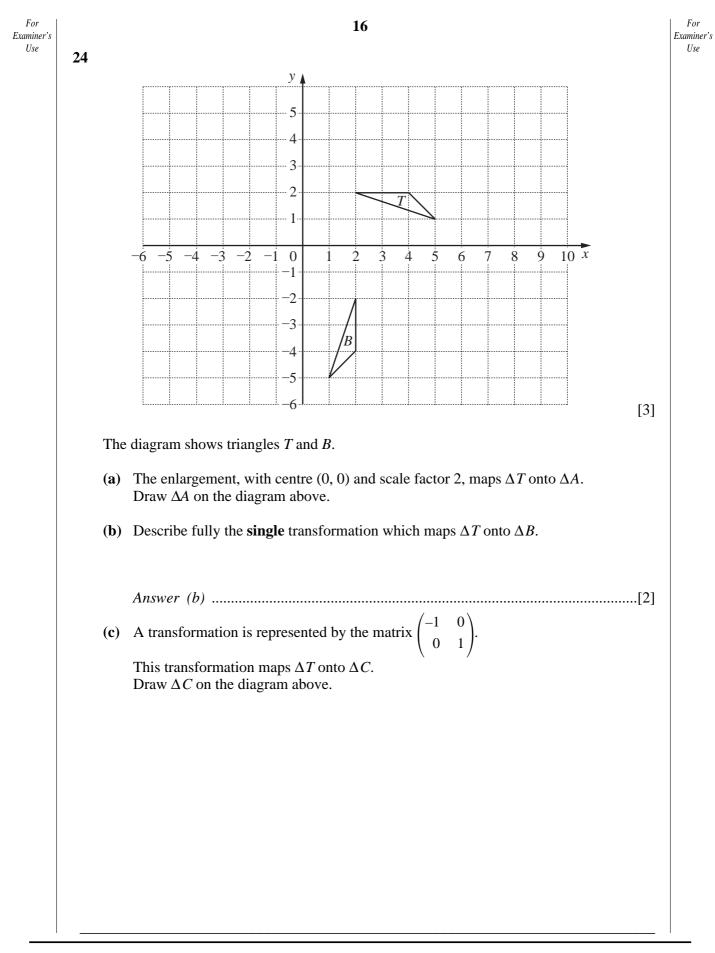

For

Examiner's

Use

22




The triangle with vertices A(4, 4), B(-2, -6) and C(4, -1) is shown in the diagram. Find

- (a) (i) the area of $\triangle ABC$,
 - (ii) the coordinates of the point *P* such that *ABCP* is a parallelogram,
 - (iii) the area of the parallelogram *ABCP*,
 - (iv) $\tan B\hat{A}C$.
- (b) It is given that the length of BC = k units. Write down $\cos B\hat{C}A$, giving your answer in terms of k.

- *Answer* (*a*) (i)unit² [1]
 - (ii) (.....) [1]
 - (iii)unit² [1]

 - $(b) \cos B\hat{C}A = \dots [1]$

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.