1	$\sqrt{15^{2}-8^{2}}$		M1
	12.7 m		A1
	$15^{2}+11^{2} \pm 2 \times 15 \times 11 \cos 55^{\circ}$ soi		M1
	Correct formula, simplification and square root taken soi	dep	M1
	156(.7...) or 535(.2...) soi	(dep on first M1)	A1
	12.5 m	further	A1
	$\cos A \hat{D} B=\frac{8}{15} \text { oe }$		M1
	$A \hat{D} B=57.8^{\circ}$ soi		A1
	67.2° or $\left(125^{\circ}-\right.$ their $\left.A \hat{D} B\right) \sqrt{ }$		A1
2	$\mathrm{p}=17 \quad \mathrm{q}=36 \quad \mathrm{r}=125$ (B1 each)		B3
	$\mathrm{s}=178$ or their $(\mathrm{p}+\mathrm{q}+\mathrm{r}) \mathrm{v}$		B1
	$x=3 n+2$ oe $\quad y=(n+1)^{2}$ oe $\quad z=n^{3}$ oe (B1 each)		B3
	$t=n^{3}+n^{2}+5 \mathrm{n}+3$ oe or their $(x+y+z) \mathrm{v}$		B18
3	20°		B1
	105°		B1
	55° or 180 - their (a) - their (b) v		B1
	55°		B2
	(allow B 1 for any indication $E \hat{C} B=75^{\circ}$)		
	30° or $85-$ their (d) v or $50-$ their (a) v		B2
(e)	(allow B 1 for indication $B \hat{A} C=B \hat{E} C$ or $A \hat{B} E=A \hat{C} E$)		

$\begin{array}{ll}11 & \text { (a) (i) } \\ & \\ & \text { (ii) } \\ & \\ & \text { (iii) } \\ & \\ & \\ & \text { (iv) }\end{array}$	b-a	B1
	$\frac{2}{3}(\mathbf{b}-\mathbf{a}) \text { oe or } \frac{2}{3}(\text { their }(\mathrm{i})) \mathrm{v}$	B1
	$\frac{1}{3} \mathbf{a}+\frac{2}{3} \mathbf{b}$ oe or $\mathbf{a}+$ their(ii) v	B1
	$\frac{5}{3} \mathbf{b} \text { oe cao }$	B1
(b)	$C \dot{D}=\overrightarrow{C O}+\overrightarrow{O D}$ or $\overrightarrow{C D}=\vec{C} \dot{B}+\vec{D}$ or better seen	M1
	$\mathbf{b}-\frac{1}{3} \mathbf{a}$ convincingly obtained $\quad \mathrm{AG}$	A1
(c)	$\frac{5}{3} b-\frac{5}{9} a$	B1
(d) (i)	Shows $E \dot{D}=\frac{5}{3} C \dot{D}\left(\right.$ accept $\left.k=\frac{5}{3}\right)$	B1
(ii)	Length of $\mathrm{ED}=\frac{5}{3}$ length of CD oe E, C and D lie on a straight line	B1 B1
(e)	$\frac{A E}{O E}$ or a correct method seen	M1
	$\frac{4}{5} \quad \text { oe }$	A1

