			-
1	(a)	$\sqrt{15^2 - 8^2}$	M1
		12.7 m	A1
	(b)	$15^2 + 11^2 \pm 2 \times 15 \times 11 \cos 55^\circ$ soi	M1
		Correct formula, simplification and square root taken soi dep	M1
		156(.7) or 535(.2) soi (dep on first M1)	A1
		12.5 m further	A1
	(c)	$\cos A\hat{D}B = \frac{8}{15}$ oe	M1
		$A\hat{D}B = 57.8^{\circ}$ soi	A1
		67.2° or $(125^\circ - \text{their } A\hat{D}B) $	A1
2	(a)	p = 17 $q = 36$ $r = 125$ (B1 each)	В3
		s = 178 or their $(p + q + r) v$	B1
	(b)	$x = 3n + 2$ oe $y = (n + 1)^2$ oe $z = n^3$ oe (B1 each)	B3
		$t = n^3 + n^2 + 5n + 3$ oe or their $(x + y + z)$ v	B18
3	(a)	20°	B1
	(b)	105°	B1
	(c)	55° or $180 - \text{their}(a) - \text{their}(b) v$	B1
			_
	(d)	55°	B2
		(allow B1 for any indication $E\hat{C}B = 75^{\circ}$)	
	(a)	20° an 95° their (d) as an 50° their (c) as	B2
	(e)	30° or $85 - \text{their}(d) \text{ v or } 50 - \text{their}(a) \text{ v}$	D2
		(allow B1 for indication $B\hat{A}C = B\hat{E}C$ or $A\hat{B}E = A\hat{C}E$)	

4	(a)	Final answer $t = \frac{mv - mu}{F}$ oe	B2
		(allow M1 for reaching $m(v - u)$ or $mv - mu = Ft$ oe)	
	(b)(i)	43 = c + 50d and $49 = c + 80d$ oe	B1
	(ii)	$c = 33 \text{ and } d = 0.2 \text{ or } \frac{1}{5}$	B3
		(allow B2 for one correct www	
		or M1 for correct elimination of one variable)	
	(iii)	$40 = \text{their } c + m \times \text{their } d$ soi	M1
		35 cao	A1
	(iv)	Statement such as "Length of unloaded string"	B1
5	(a)(i)	Fig $(\pi \times 24^2 \times 125)$ soi	M1
		226 litres cao	A2
		(allow A1 for 226 000 seen)	
	(ii)	Fig $\{2\pi \times 24 \times 125 + (2 \times) \pi \times 24^2\}$ soi	M1
		Division by 100^2 soi or works in metres	M1
		2.07 m^2 cao	A1
	(b)	fig $\frac{48000}{150\times20}$ soi	M1
	(-)	150×20	
		16 cm	A1
	(c)	(Drop =) fig $\frac{20000}{\pi \times 24^2}$ or fig $\frac{20000}{20 \times 150}$	M1
		Divides their drop by 2.5 or $\frac{20000}{2.5}$ soi indep	M1
		4.42 cm/h cao	A1

6	(a)	Triangle A correctly plotted	B1
	(b)	Triangle B with vertices at (10, 1), (12, 1) and (10, -2)	B1
	(c)	Triangle C with vertices at (-3, 1), (-3, -1) and (-6, 1) (allow B1 for 2 vertices correct or vertices at (9, 7), (12, 7) and (9, 9)	B2
	(d)	Triangle D with vertices at $(1, 4)$, $(1, 2)$ and $(-2, 4)$ (allow B1 for 2 vertices correct or vertices at $(0, -3)$, $(0, -5)$, $(-3, -3)$	В2
	(e)	Shear Factor 2 or with matrix $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$	M1 A1
		[In (b), (c), (d) allow $$ from earlier mistakes]	
7	(a)	$\frac{200(x+4) - 200x}{x(x+4)} \text{oe}$	M1
		Final answer $\frac{800}{x(x+4)}$ oe	A1
	(b)(i)	$\frac{200}{x}$	B1
	(ii)	$\frac{200}{x+4}$ or (their (i) – 5) seen	B1
		their $\left(\frac{200}{x}\right)$ - their $\frac{200}{x+4} = \pm 5$ or $(x+4)$ [their (i) - 5] = 200 oe	M1
		Correct derivation of $x^2 + 4x - 160 = 0$ AG	A1
	(c)	$\frac{-4\pm\sqrt{656}}{2}$	B2
		(allow B1 for -4 and 2 and B1 for $\sqrt{656}$ or 25.6)	
		10.81 and -14.81 (B1 each) (allow B1 for both 10.8() and -14.8() seen)	B2
	(d)	$\frac{40}{\text{their 10.81}} + \frac{120}{4 + \text{their 10.81}} (\text{dep on (their 10.81)} > 0)$	M1
		11.8 litres cao (but accept 11 800 cm^3)	A1

8 (a)
Vertical lines at
$$t = 60, 80, 90, 95, 100, 110 and 130$$
B1

Rectangles completed, with heights in ratio 1 : 5 : 14 : 20 : 12 : 2
(allow B1 for 4 or 5 correct heights)
B1

(b)
Interval 95 < $t \le 100$ indicated
B1

(c)
 $98\frac{3}{16}$ oe or 98.2 or better
B3

(allow B2 for 98 or $\frac{7855}{80}$ seen
or allow M1 for $\frac{4t_1 + 10t_2 + ...}{4 + 10 + ...}$ where $60 \le t_1 \le 80$ etc
B1

(d)
 $\frac{7}{40}$ oc
B1

(e) (i)
 $\frac{7}{790}$ cao
B1

(allow B1 for equivalents or for $\frac{8 \times 7}{80 \times 79}$ or for $\frac{7}{800}$)
B2

(ii)
 $\frac{4}{395}$ oe
B2

(allow B1 for $\frac{2 \times 4 \times 8}{80 \times 79}$ or for answer $\frac{2}{395}$ oe)
B2

9	(a)	p = 29(.0)	B1
	(b)	All 8 points plotted v	P2
		(allow P1 for at least 6 correct plots v)	
		Smooth curve through all plots of which at least 6 v	C1
	(c)(i)	1.28 to 1.33	B1
	(ii)	13.7 to 13.99	B1
	(d)	Tangent drawn at $x = 1.5$ and using $\frac{\text{changein } y}{\text{changein } x}$	M 1
		-9(.0) to -12(.0)	A1
	(e)	Ruled straight line through (0, 25) and (4, 13) (allow B1 for short ruled line or good freehand line)	B2
	(f) (i)	1.2(0) to 1.25 and 3.2(0) to 3.28	B1
	(ii)	$7x^3 - 25x^2 + 25 = 0$ oe	B 1
		(accept $a = 7$, $b = -25$, $c = 0$, $d = 25$)	
10	(a)	Reasonable explanation, such as $\frac{1}{5}$ of whole angle at O	B1
	(b)	$\frac{1}{2}$ 1.5 ² sin 72° or other complete method for area of triangle	M1
		5× their (area of triangle) dep	M1
		5.35 cm^2	A1
	(c)(i)	Reference to angle at centre of circle property, (or other method)	B1
			M1
	(ii)	$2 \times 1.5 \cos 18^{\circ}$ or other complete method	A1
		2.85 cm convincingly obtained AG	2.61
	(iii)	$\frac{1}{2}$ (their 2.85) ² sin 36° or other complete method	M1 A1
	(111)	2.39 cm^2	111
			M1
	(iv)	$\frac{36}{360}\pi$ (their 2.85) ²	
		$0.162 \text{ to } 0.166 \text{ cm}^2$	A1
		0.102 to 0.100 cm	B1
	(v)	6.15 to 6.19 cm ² or [their (b) + 5 × their (c)(iv)] v	

11 (a) (i)
$$\mathbf{b} - \mathbf{a}$$
B1(ii) $\frac{2}{3}(\mathbf{b} - \mathbf{a})$ or or $\frac{2}{3}((\text{their (i)}) \mathbf{v}$ B1(iii) $\frac{1}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$ or or $\mathbf{a} + (\text{their (ii)}) \mathbf{v}$ B1(iv) $\frac{5}{3}\mathbf{b}$ or or $\mathbf{a} + (\text{their (ii)}) \mathbf{v}$ B1(iv) $\frac{5}{3}\mathbf{b}$ or co B1(iv) $\frac{5}{3}\mathbf{b}$ or $cdder = Cdder + Bdder deter seen$ M1(b) $Cdder = Cdder + Odder deter deter deter seen$ M1(c) $\frac{5}{3}\mathbf{b} - \frac{5}{9}\mathbf{a}$ B1(d) (i)Shows $Edder = \frac{5}{3}Cdder (accept k = \frac{5}{3})$ B1(ii)Length of ED = $\frac{5}{3}$ length of CD or eB1(e) $\frac{AE}{OE}$ or a correct method seenM1 $\frac{4}{5}$ oreA1