	Centre Number	Candidate Number
Candidate Name		

CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level COMBINED SCIENCE

5129/2

PAPER 2

MAY/JUNE SESSION 2002

2 hours 15 minutes

Candidates answer on the question paper. No additional materials are required.

TIME 2 hours 15 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 20.

FOR EXAMI	INER'S USE
TOTAL	

Local Examinations Syndicate

- 1 A boy runs at 6.0 m/s and his dog runs at 10.0 m/s.
 - (a) Calculate the distance travelled in 15.0 s by
 - (i) the boy,

.....[1]

(ii) the dog.

.....[1]

(b) The boy races his dog, as shown in Fig. 1.1.

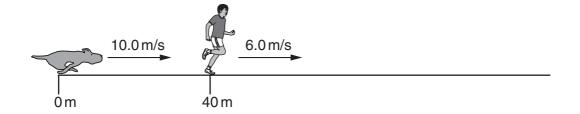


Fig. 1.1

The boy starts 40 m ahead of the dog. They start running at the same time. Fig. 1.2 shows a distance – time graph for the dog and the boy.

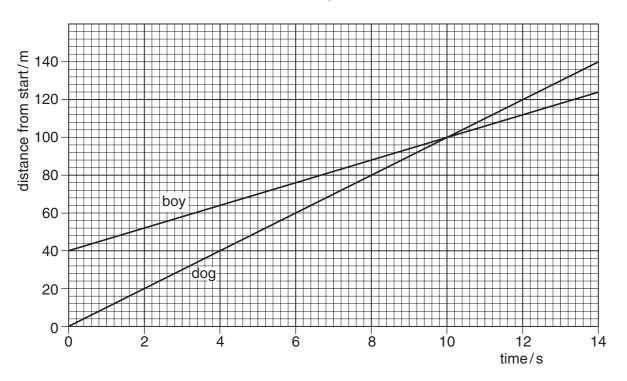


Fig. 1.2

(i)	How can you tell from Fig. 1.2 that the dog is moving faster than the boy?	
(ii)	How far has the dog run when it catches up with the boy?	[1]

[2]

- 2 The most common isotope of phosphorus has the symbol $^{31}_{15}$ P.

(b) What is the difference between this isotope and the other isotopes of phosphorus?

.....[1]

(c) Complete Fig. 2.1 to show the electronic structure of $^{31}_{15}$ P. [2]

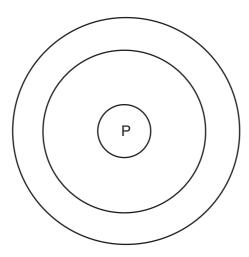


Fig. 2.1

(d) Name another element that has the same number of outer shell electrons as phosphorus.

[1

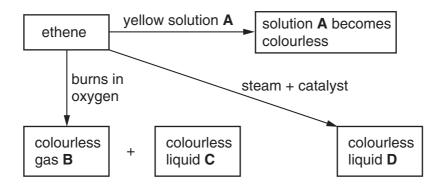
3 Fig. 3.1 shows side views of two human teeth.

Fig. 3.1

(a)	Sug	gest a different use for each type of tooth.
	A	
	В	
		[2]
(b)	Ехр	lain the part played by teeth in digestion.
		[1]
(c)	(i)	State three causes of dental decay.
		1
		2
		3[3]
	(ii)	State two ways in which dental decay can be reduced other than by cleaning the teeth.
		1
		2

4 Fig. 4.1 shows some elements in the reactivity series.

element		K	Na	Ca	Al	С	Fe	Н	Cu
decreasing reactivity -								─	


Fig. 4.1

(a)	Use	Fig. 4.1 to explain fully	
	(i)	why water pipes made of copper last longer than those made of iron,	
	(ii)	why iron is extracted by heating its ore with carbon but aluminium is not.	
(b)	Nan	ne one non-metal, other than carbon, shown in Fig. 4.1.	
			[1]

5

(a)	Wa	ves are either transverse or longitudinal.
	(i)	Explain the difference between a transverse wave and a longitudinal wave.
		[3]
	(ii)	Give one example of a longitudinal wave[1]
(b)		ples on the surface of a pond have a frequency of 10 Hz. One ripple travels 80 cm in me of 5.0 s.
	(i)	What is meant by frequency?
		[1]
	(ii)	Calculate
		1. the speed of the ripples,
		[2]
		2. the wavelength of the ripples.
		[2]

Study the reaction scheme in Fig. 6.1. 6

	Fig. 6.1	
(a)	Identify the substances A, B, C and D.	
	yellow solution A	
	colourless gas B	
	colourless liquid C	
	colourless liquid D	[4]
(b)	Ethene is an unsaturated hydrocarbon.	
	Explain the terms unsaturated and hydrocarbon.	
	unsaturated	
	hydrocarbon	
		[2]
(c)	Name the type of reaction that occurs between ethene and yellow solution A .	
		[1]

7 Fig. 7.1 shows a section through an eye.

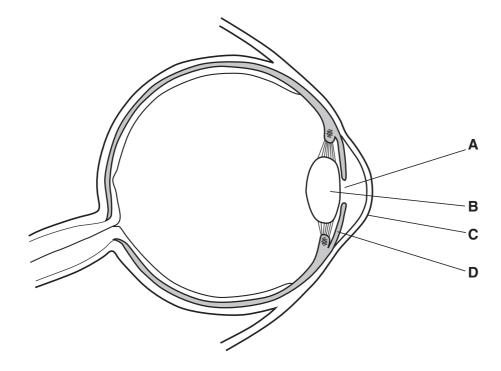


Fig. 7.1

(a)	Name the parts labelled A to D .
	A
	В
	C
	D [4]
(b)	Name the part of the eye that changes light energy to nerve impulses.
	[1]
(c)	State and explain how the ciliary muscles help to produce a focused image when looking at a near object.
	[3]
	[0]

	(u)	(1)	State flow the muscles of the part labelled b respond when you enter bright light.
			[1]
		(ii)	State how this affects part A .
		(iii)	Explain how this is an advantage.
			[1]
8	A s	tone	on Earth has a mass of 80 g. On Earth, the acceleration due to gravity $g = 10 \mathrm{N/kg}$.
	(a)	Exp	lain the difference between mass and weight.
			rol
	(b)		[2] culate
	(2)	(i)	the mass of the stone in kg,
		()	3,
			[1]
		(ii)	the weight of the stone on Earth.
		` ,	
			[1]

9 An excess of dilute sulphuric acid is added to 6.2 g of copper(II) carbonate.

The equation for the reaction is

(a)	(i)	How do you know when the reaction is complete?

F4	41
	ч

(ii)	How can you show that carbon dioxide is given off during the reaction?

(b) (i) Calculate the relative molecular mass, $M_{\rm r}$, of copper(II) carbonate.

(A _r : Cu, 64; C, 12;	O, 16.)	

.....[2]

(ii)	i) Calculate the relative molecular mass, $M_{\rm r}$, of carbon dioxide.						
		[1]					

(iii) Use your answers to (b)(i) and (b)(ii) to calculate the mass of carbon dioxide produced from 6.2 g of copper(II) carbonate.

5129/2/M/J/02

.....

10 Fig. 10.1 shows a refrigerator that has the freezer compartment at the top. Heat is removed from the freezer compartment. This makes it the coldest part of the refrigerator.

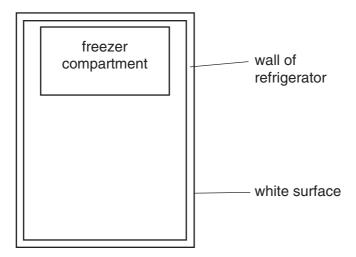


Fig. 10.1

(a)	Explain fully how the rest of the refrigerator is cooled by convection currents.
	[3]
(b)	Explain why the white surface helps to keep the refrigerator cool.
	[2]

11	(a)		norrhoea and AIDS are sexually transmitted diseases. at is meant by a sexually transmitted disease?
	(b)	(i)	State two signs of gonorrhoea in a male. 1
			2[2]
		(ii)	How is gonorrhoea treated?
		_	[1]
	(C)		lain why AIDS is much more dangerous than gonorrhoea.
			[2]
	(d)	Sta	te a way, other than that in (a) , by which AIDS may be transmitted.
			[1]

12 Fig. 12.1 shows burning sodium being lowered into a gas jar of carbon dioxide.

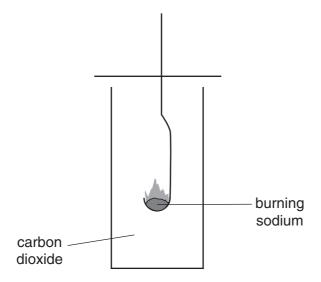


Fig. 12.1

The sodium burns to give a white solid and a black solid.

(a)	Sug	gest the identity of the	
	whit	re solid,	
	blac	k solid[2]
(b)	Wha	at type of reaction does the sodium undergo?	
			1]
(c)		en water is added to the products of the reaction, the white solid dissolves but the solid does not dissolve.	ne
	(i)	Suggest the type of bonding present in the white solid.	
		[1]
	(ii)	What process can be used to separate the black solid from the solution?	
]	1]

13 Liquid-in-glass thermometers may contain alcohol or mercury. Fig. 13.1 gives information about these liquids.

liquid	melting point/°C	boiling point/°C		
alcohol	-117	78.5		
mercury	-39	365		

Fig. 13.1

(a)	A liquid-in-glass thermometer is used to measure a temperature of −42 °C.					
	Which liquid is used in this thermometer? Give a reason for your choice.					
			[1]			
(b)	Fig.	g. 13.2 shows the structure of a liquid-in-glass ther	mometer.			
thir	n glas	ass bulb narrow capillary	tube			
	liqu	uid				
		Fig. 13.2				
	(i)	State why the glass wall of the bulb is thin.				
			[1]			
	(ii)	State why the capillary tube is narrow.				
			[1]			
(c)	A th	hermometer must have a scale.				
		plain why a mercury-in-glass thermometer is place iling water.	ed in melting ice and then placed in			
			[2]			

(a)	Sta	te three conditions that are required for seeds to germinate.
	1	
	2	
	3	[3]
(b)	In tr	n experiment to investigate the growth of pea seeds, two seed trays were prepared. ray 1, 10 seeds were planted in sand. ray 2, 10 seeds were planted in soil.
	Botl	h trays were watered regularly and kept under the same conditions for six weeks.
	(i)	Explain why the pea seeds in both trays grew equally well for the first two weeks.
	(ii)	After six weeks, the seedlings growing in tray 2 were bigger than those in tray 1. Explain why the soil in tray 2 was more fertile than the sand in tray 1.
	(iii)	Suggest one way in which the seedlings in the sand could be made to grow better.
(c)	Evn	lain the importance of nitrogen-containing ions to the growing plants.
(0)		nain the importance of hitrogen-containing ions to the growing plants.
		[1]

[4]

15 In Fig. 15.1, the boxes on the left give the names of some elements and the boxes on the right show some uses of elements.

Draw a line between the boxes to link each element to its correct use. One of the lines has been drawn for you.

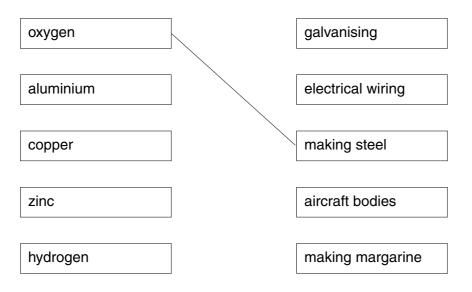


Fig. 15.1

5129/2/M/J/02

[Turn over

- **16** Fig. 16.1 shows a battery of e.m.f. $6.0\,\mathrm{V}$ in series with two resistors. One of these resistors has a fixed resistance of $4.0\,\Omega$.
 - (a) On Fig. 16.1, draw the symbol for a voltmeter, connected to measure the potential difference across the **fixed** resistor. [2]

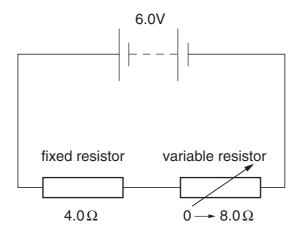


Fig. 16.1

(b) The variable resistor is adjusted until the voltmeter across the fixed resistor reads 4.0 V.
Calculate the potential difference across the variable resistor.

.....[1]

(c) The variable resistor can be changed from zero to $8.0\,\Omega$. It is adjusted to give the smallest current in the circuit.

Calculate the value of this current.

.....[3]

BLANK PAGE

The Periodic Table of the Elements DATA SHEET

		Υp				8	
	169	Ę	Thulium	69		Md	Mendelevium 101
		ங்		99		FB	Fermium 100
		웃				Es	0,
	162	Δ	Dysprosium	99			Californium 98
		Тр		65		æ	Berkelium 97
	157	gg	Gadolinium	49		CH	Curium 96
	152	Eu	Europium	63		Am	Americium 95
	150	Sm		9		Pu	Plutonium 94
		Pm	Promethium	61		Ν	Neptunium 93
	144	PR			238	_	Uranium 92
	141	Ā	Praseodymium	29		Ра	Protactinium 91
	140	S	Cerium	58	232	丘	Thorium 90
± 68	مونتوم لونور	iold series	ad selles	Г	a = relative atomic mass	X = atomic symbol	b = proton (atomic) number

м 🗙

Key

Lr Lawrencium 103

7

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).