Joss Sticks by exampaper.com.sg

#	Ans	Workings/Remarks
1	D	Condenser allows unreacted M and N that have boiled off to convert back into liquid state.
		The condenser is positioned vertically so that liquid M and N could flow back into the boiling
		flask and continue reacting with each other.
2	А	Barium sulphate is insoluble.
3	А	Alkaline gases turn red litmus paper blue.
		Ammonia reacts with water in damp litmus paper to form ammonium hydroxide, which is
		alkaline.
4	~	Chlorine turns blue litmus to red then bleach.
4	C	Cation to anion ratio in ionic crystal lattice must show stoichiometry of the compound.
5	С	Giant covalent compound is insoluble in water.
6	D	Electronic configuration of O: 2.6 \rightarrow 2.8 by providing 2 electrons to be stable
		Electronic configuration of F: 2.7 \rightarrow 2.8 by providing 1 electron to be stable
_	_	Electronic configuration of C: $2.4 \rightarrow 2.8$ by providing 4 electrons to be stable
7	В	P-Q: Change in temperature, average kinetic energy of molecules increases.
		Q-R: No change in temperature, change in state occurs. Melting takes place at 0°C. R-S: Rise in temperature of water at liquid state.
		T-U: Boiling, change in state, occurs at a fixed temperature 100°C.
8	A	Only option A consists of one insoluble (calcium carbonate) and one soluble (sodium chloride)
0	A	salt.
9	D	Sublimation is the change from solid to gaseous state. Mercury is a liquid at room temperature.
10	B	Mr of nitrogen and carbon monoxide is the same. Rate of diffusion is the same.
11	A	
11	A	final no. of mole of gas – initial no. of mol of gas
		% change in vol. = $\frac{11000 \text{ of gas}}{11000 \text{ of gas}} X 100\%$
		A: 3/6 x 100 %= 50%
		B: 5/7 x 100 %= 71.4%
		C: 2/3 x 100 %= 66.7%
		D: 3/3 x 100 %= 100%
		*note: ALL gases have same molar volume (vol. of one mole).
12	А	$2\text{HCl} + \text{Na}_2\text{CO}_3 \rightarrow \text{CO}_2 + 2\text{NaCl} + \text{H}_2\text{O}$
		No. of mol of $Na_2CO_3 = 25 / 1000 \times 0.2 = 0.005$
		No. of mol of HCl = $0.005 \times 2 = 0.01$
10	•	Volume of HCl = $0.01 / 0.1 \times 1000 = 100 \text{ cm}^3$
13	А	Mass of O in $X = 8 - 5.6 = 2.4g$ No of mole of $O = 2.4 / 16$
		No of mole of $X = (2.4 / 16) \times (2 / 3)$
14	A	For the same time taken, no. of electrons flowing in both the cells is the same.
14	^	Since Q and S have different increase in mass, no. of electrons required to discharge each
		cation in both cells would be different. This implies oxidation state of cation in both cells is
		different and therefore different element and atomic mass.
15	С	I: melting is endothermic.
. •		II: boiling id endothermic
		III: combustion is exothermic
		IV: condensation is exothermic
16	С	Largest initial concentration gives fastest initial rate of reaction.

GCE O Level Oct/Nov 2008 Chemistry 5072/5067 Paper 1 Suggested Answers

© ϕ exampaper.com.sg. all rights reserved.

Joss Sticks by exampaper.com.sg

		A: $40/36.5 = 1.10 \text{ mol/dm}^3$
		B: $20/36.5 = 0.548 \text{ mol/dm}^3$
		C: $10/36.5 \times 10 = 2.74 \text{ mol/dm}^3$
		D: $4/36.5 \ge 20 = 2.19 \text{ mol/dm}^3$
17	D	At time 0, pH of solution should be more than 7 due to presence of NaOH
		After neutralization (pH 7), pH of solution should be less than 7 due to presence of excess HCl
18	D	Carbon dioxide is acidic.
19	А	Test for Al ³⁺ ion with NaOH: Aluminium hydroxide (white ppt) is soluble in excess of NaOH.
20	В	Lead (II) carbonate reacts with sulphuric acid to form lead (II) sulphate, which forms an
		insoluble layer over lead(II) carbonate, preventing further reaction with acid.
21	А	$H_3PO_4 + 3NaOH \rightarrow Na_3PO_4 + 3H_2O$
		Since concentration of both reactants is the same, volume of acid to volume of base ratio
		should be 1:3
22	В	A: oxidation state of Mg: 0 in Mg to +2 in MgCl ₂ [O]
		oxidation state of H: $+1$ in HCl to 0 in H ₂ [R]
		B: no change in oxidation state
		C: oxidation state of Cu: 0 in Cu to $+2$ in Cu(NO ₃) ₂ [O]
		oxidation state of N: +5 in HNO ₃ to +4 in NO ₂ [R]
		D: oxidation state of Cu: 0 in Cu to $+2$ in CuSO ₄ [O]
		Oxidation state of S: $+6$ in H_2SO_4 to $+4$ in SO_2 [R]
23	D	Organic acids are weak acids.
		One mole of sulphuric acid gives two moles of H ⁺ ions whereas one mole of hydrochloric acid
		gives one mole of H ⁺ ion.
24	С	A: metals form basic oxides; non-metals form acidic oxides
	-	B: group number predicts no. of electrons involved in bonding, thus formula of compound.
25	D	$CuSO_4 + Na_2CO_3 \rightarrow Na_2SO_4 + CuCO_3$
_		No. of mole of $CuSO_4 = 4 / 1000 \times 1.0 = 0.004$
		No. of mole of $Na_2CO_3 = 8 / 1000 \times 1.0 = 0.008$
		Compounds remained behind after reaction: colourless Na ₂ CO ₃ (aq) (excess reactant),
		colourless Na_2SO_4 (aq), green CuCO ₃ (s).
26	А	Melting point increases down the elements of Group VII.
_		Therefore, Y is below X in the group.
		This implies Y has more protons and less reactive than X.
		Group VII elements form diatomic molecules.
27	С	
28	В	A: calcium hydroxide reacts with sulphuric acid to form salt and water only.
_ Ŭ	-	C: all carbonates are insoluble in water except sodium, potassium and ammonium carbonates.
		D: zinc oxide reacts with sulphuric acid to form salt and water only.
29	В	Copper is less reactive than iron. Therefore, iron displaces copper ions from its solution,
		resulting in copper deposit.
		Fe (s) + Cu ²⁺ (aq) \rightarrow Fe ²⁺ (aq) + Cu (s)
30	D	A: Copper does not react with acid because it is less reactive than hydrogen.
_		B: Lead (II) sulphate is insoluble.
		C: Some are colourless e.g. $Pb(NO)_3$
31	С	*Note: This is different form question that is asking for % of nitrogen by mass in the
		compound, in which mass of nitrogen is compared against Mr of compound.
		Thus, the compound which contains the most number of nitrogen atoms in the molecular
		formula should be the correct answer.
32	В	
02		

Joss Sticks by exampaper.com.sg

33	В	Combustion of fuels in cars and power stations produces carbon dioxide.
		Plants need to take in carbon dioxide for photosynthesis. Carbon in glucose comes from
		carbon in CO ₂ .
		$6\text{CO}_2 + 12\text{H}_20 \xrightarrow{\text{sunlight}} \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 + 6\text{H}_2\text{O}$
34	В	Syllabus states that paraffin (kerosene) is used as a fuel for heating and cooking and for
		aircraft engines.
35	D	A: R, S and T contain 4 carbons.
		B: Alkyl group (CH ₃) attached to last carbon atom in linear chain is not considered as
		branched chain.
		C: S is but-2-ene.
36	В	General formula of alkane is C_nH_{2n+2}
37	D	Combustion hydrocarbon in excess oxygen gives carbon dioxide and water only. Therefore, X
		is CO ₂ .
		Alkenes decolourise bromine spontaneously because of C=C bond. Therefore, Y is ethane.
38	А	Nylon is polyamide, which must contain amide linkage.
		Terylene is polyester, which must contain ester linkage.
39	В	Esterification involves removal of one mole of H ₂ O. (-OH from acid and –H from alcohol)
40	В	$Mg + 2CH_3COOH \rightarrow (CH_3COO)_2Mg + H_2$