

REVISION CHECKLIST for O Level Chemistry 5070

A guide for students

How to use this guide

The guide describes what you need to know about your O-level Chemistry examination.

It will help you plan your revision programme for the both the theory and practical examinations and will explain what examiners are looking for in the answers you write. It can also be used to help you revise by using tick boxes in section 3 ('What you need to know'). This will help you to check the topic areas you have covered and what you need to know in each of theses areas.

The guide contains the following sections:

Section 1 - How will you be tested?

This section will give you information about the theory Papers and the different types of practical examination Papers that are available.

Section 2 - What will be tested?

This section describes the areas of knowledge, understanding and skills that you will be tested on.

Section 3 - What you need to know

This shows the syllabus content in a simple way so that you can check:

- the topics you need to know about
- details about each topic in the syllabus
- how much of the syllabus you have covered

Section 4 - Appendices

This section covers the other things you need to know such as:

- how to make the most out of the copy of the Periodic Table that you are given in the exam
- how to use the table of tests for particular chemical groups
- the importance of the key words (command words) the examiners use in Examination Papers
- · information about the mathematical skills you will need

Not all the information may be relevant to you. You will need to select what you need to know in section (1) by finding out from your teacher which practical paper you are taking.

Section 1 - How will you be tested?

1.1 The examination Papers you will take

You will be entered for three examination Papers: **two** of these will be theory Papers and **one** will be a practical Paper. You will need to ask you teacher which practical Paper you will be taking. There is no choice in the theory Papers that you will take.

1.2 About the theory Papers

The table gives you information about the theory papers

Paper number	How long and how many marks?	What's in the paper?	What's the % of the total marks?
Paper 1 Theory	1 hour (40 marks)	40 multiple choice questions. You choose one answer you think is	about 27%
Multiple Choice		correct from 4 possible suggestions.	
Paper 2 Theory Structured questions	1 ½hours (75 marks)	Section A (45 marks) consists of a small number of structured questions. Section B (30 marks) consists of 4 questions each of 10 marks. You choose 3 of these questions. In both Section A and section B you should write your answers in the spaces provided.	about 52%
Practical paper	see next table (30 marks)	see next table	about 21%

Total 100%

1.3 About the practical Papers

You will do **one** of the practical Papers shown in the table. Your teacher will tell you which practical Paper you will do. The number of marks differs between the Papers but your final mark will be calculated so that it is worth the same percentage of the examination as the other practical Paper.

Paper number and type	How long and what its marked out of?	What's involved?
Paper 3	1 ½ hours	You do a practical exam which is supervised by
(Practical Test)	Practical Test) (40 marks) your teacher. There are usually 2 qu	
		testing the techniques stated in the detail (i)
		below.
Paper 4	1 hour	You answer a written paper about practical work.
(alternative to	(60 marks)	There are usually about 6 questions which test the
practical)		ten skill areas stated in the detail (ii) below.

Here are some more details about each of the practical Papers. If you are unsure of anything, ask your teacher.

(i) Paper 3 (Practical Test)

You do a practical exam which is supervised by a teacher. You are given an instruction sheet which enables you to carry out experiments, handle data and draw appropriate conclusions. You are not allowed to refer to note books, text books or any other information. You will be given a table of 'Qualitative analysis notes'. These are usually the ones appearing in the current syllabus.

The questions in the practical paper may include:

- a simple titration (you must know that methyl orange in pink in excess acid and yellow/ orange in excess alkali)
- an experiment that involves measurement e.g. a temperature change or measuring time and volume or mass in an experiment on reaction speed
- a problem involving the identification of an unknown substance using qualitative analysis notes and /or simple chromatography, filtration and tests for oxidising and reducing agents

You may be asked to use the following techniques:

- measuring volumes of liquids and gases, including the use of burettes and pipettes (You should be able to measure volumes in measuring cylinders to the nearest scale unit.)
- a knowledge of acid alkali titrations using methyl orange indicator or other titrations given suitable information (You should be able to take burette reading to the nearest 0.1 cm³).
- you should be able to carry out a simple experiment involving speed of reaction rate of reaction)
- measuring temperature (You should be able to measure the temperature to the nearest 0.5°C)
- paper chromatography
- filtering
- identifying ions and gases using a table of tests to help you (see Appendices)
- tests for oxidising agents and reducing agents

(ii) Paper 4 (Alternative to Practical Paper)

This is a written Paper, testing 10 skill areas: You may be asked to:

- record reading from diagrams of apparatus, e.g. burette readings
- answer questions on the arrangement of apparatus, e.g. for collecting gases
- · complete tables of data
- draw conclusions from information
- answer questions about experimental data
- answer questions about tests for ions, gases, oxidising and reducing agents you will be expected to learn and remember these tests
- plot and interpret information from graphs
- identify sources of error and suggest improvements in the experiment
- suggest suitable apparatus for investigations
- perform simple calculations

Section 2: What will be tested?

The Examiners take into account the following in your examination Papers:

- your knowledge (what you remember) and understanding (how you use what you know and apply it to unfamiliar situations)
- how you handle information and solve problems
- your use of experimental skills

These areas of knowledge and skills are called Assessment Objectives. The theory Papers test mainly Assessment Objective A (knowledge with understanding) and Assessment Objective B (handling information and problem solving). The purpose of the Practical Paper is to test Assessment Objective C (experimental skills). Your teacher will be able to give you more information about how each of these is used in examination Papers. The table shows you the range of skills you should try to develop.

Skill	What the skill means	What you need to be able to do
A: knowledge with understanding	remembering facts and applying these facts to new situations	 use scientific ideas, facts and laws know scientific definitions e.g. what is reduction? know about chemical apparatus and how it works know about chemical symbols, quantities (e.g. mass) and units (e.g. dm³) understand the importance of science in everyday life
B: handling information and problem solving	how you extract information and rearrange it in a sensible pattern and how you carry out calculations and make predictions	 select and organize information from graphs tables and written text change information from one form to another, e.g. draw graphs, construct symbol equations from word equations arrange data and carry out calculations identify patterns from information given and draw conclusions explain scientific relationships, e.g. use the moving (kinetic) particle theory, to explain ideas about rate of reaction make predictions and develop scientific ideas solve problems
C: experimental skills (the parts in brackets only refer to Paper 3)	planning (and carrying out) experiments and recording and analysing information	 follow instructions (to set up and use apparatus and techniques) make observations and measurements and record them analyse experimental results and suggest how valid they are plan an experiment (and carry it out, describing to what extent the experiment worked) and suggest improvements

Section 3: What you need to know

This is a table, which describes the things you may be tested on in the examination. It is arranged in 11 main themes e.g. metals, periodic table etc. Some of these themes are divided into topics e.g. properties of metals, reactivity series, extraction of metals etc. The third column gives the list of things which you should be able to do.

How to use the table

You can use the table throughout your Chemistry course to check the topic areas you have covered. You can also use it as a revision aid. When you think you have a good knowledge of a topic, you can tick the appropriate box in the checklist column. The main headings in the topic areas are usually followed by the details of what you should know.

Test yourself as follows:

- cover up the details with a piece of paper
- try to remember the details
- when you have remembered the details correctly, put a tick in the appropriate box

If you use a soft pencil to tick the boxes you can retest yourself whenever you want by simply rubbing out the ticks. If you are using the table to check the topics you have covered, you can put a tick in the topic column next to the appropriate bullet point.

The column headed comments can be used:

- to add further information about the details for each bullet point
- to note relevant page numbers from your text book
- to add learning aids e.g. OIL RIG (for oxidation is loss (of electrons) and reduction is gain (of electrons)
- to highlight areas of difficulty or things which you need to ask your teacher about

Theme	Topic	You should be able to:	Comments	Checklist
1 Experimental Chemistry	1.1 Experimental design	name apparatus for measuring time, temperature, mass and volume. (For volume you need to know burette, pipette, measuring cylinder, gas syringe)		
		describe apparatus for simple experiments including collection of gases and measuring rate of reaction.		
	1.2 Methods of	describe methods of purification using a suitable solvent		
	purification and analysis	describe methods of purification using filtration and crystallisation		
		 describe methods of purification using distillation and fractional distillation (to separate substances in crude oil, liquid air and fermented liquor) 		
		suggest methods of purification when given suitable information		
		describe paper chromatography		
		interpret chromatograms (including use of Rf values)		

	explain the use of locating agents in chromatography	
	comment on the purity of substances when given data on their melting and boiling points	
	explain the importance of purity of substances in everyday life e.g. drugs, foods	
1.3 Identification of ions and	describe the use of sodium hydroxide and aqueous ammonia to identify aluminium ions	
gases	describe the use of sodium hydroxide and aqueous ammonia to identify aluminium ions	
	describe the use of sodium hydroxide to identify ammonium ions	
	describe the use of sodium hydroxide and aqueous ammonia to identify calcium ions	
	describe the use of sodium hydroxide and aqueous ammonia to identify copper (II) ions	
	describe the use of sodium hydroxide and aqueous ammonia to identify iron(II) and iron(III) ions	
	describe the use of sodium hydroxide and aqueous ammonia to identify zinc ions	
	describe a test to identify carbonate ions	
	describe a test to identify chloride ions	
	describe a test to identify iodide ions	
	describe a test to identify nitrate ions	
	describe a test to identify sulfate ions	
	describe a test for ammonia describe a test for carbon dioxide	
	describe a test for carbon dioxide describe a test for chlorine	
	describe a test for chloring describe a test for hydrogen	
	describe a test for oxygen	
	describe a test for sulfur dioxide	
	describe a chemical test for water	

Theme	Topic	You should be able to:	Comments	Checklist
2	2.1	describe solids liquids and gases		
The particulate nature of matter	Kinetic particle theory	use the kinetic particle theory to explain the changes which occur when of solids change to liquids and liquids change to gases and vice versa		
		explain the energy changes which occur in the above interchanges.		
		describe and explain evidence for the movement of particles in solids, liquids and gases		
		explain everyday effects of diffusion in terms of particle movement		
		explain how molecular mass affects rate of diffusion (no calculations required)		
		explain how temperature affects rate of diffusion		
	2.2 Atomic structure	state the charges and approximate relative masses of a proton, neutron and electron		
	•	use diagrams to describe the structure of the atom - protons and neutrons (nucleons) in the centre and electrons arranged in shells (energy levels)		
		define proton and nucleon number		
		describe the electron arrangement of the first 20 atoms in the Periodic Table		
		• 12 Interpret and use symbols such as C 6		
		define the term isotope		
		find the number of protons, electrons and neutrons in atoms and ions given relevant information		
		state that some isotopes are radioactive		
	2.3 Structure and	describe the differences between elements, compounds and mixtures		
		compare the structure and properties of molecular substances with the structure of giant molecular substances		
		compare the structure and bonding of diamond and graphite and relate these to electrical conductivity and lubricating or cutting action.		

	work out the physical and chemical properties of substances from their structures and bonding and vice versa	
2.4 Ionic bonding	describe the formation of ions by gain or loss of electrons to form the inert gas structure	
	describe the formation of ionic bonds between metals and non-metals	
	state that ionic compounds are held in a giant lattice by electrostatic attraction	
	work out the formulae of ionic compounds from diagrams of their lattice structures	
	relate the physical properties of ionic compounds to their lattice structure	
2.5 Covalent bonding	describe covalent bonding as sharing electron pairs to gain the inert gas electron configuration	
	use dot and cross diagrams to describe the bonding of	
	H ₂ , Cl ₂ , O ₂ , N ₂	
	use dot and cross diagrams to describe the bonding of	
	HCI, H ₂ O, CH ₄ , C ₂ H ₄ , CO ₂	
	work out the arrangement of electrons in other covalent molecules	
	relate the physical properties of covalent compounds to their structure and bonding	
2.6 Metallic	describe metallic bonding as a lattice of positive ions in a sea of electrons	
bonding	relate the malleability of metals to their structure	
	relate the electrical conductivity of metals to the mobility of the electrons in the structure	
	· · · · · · · · · · · · · · · · · · ·	

Theme	Topic	You should be able to:	Comments	Checklist
3 Formulae,		state the symbols of the elements named in the syllabus		
Stoichiometry and the mole concept		state the formulae of the compounds named in the syllabus		
Сопсерт		work out the formula a simple compound from the ratio of atoms present and vice versa		
		work out the formula of an ionic compound from the charges on the ions present and vice versa		
		interpret and construct chemical equations		
		interpret and construct ionic equations		
		understand and use state symbols in equations		
		define relative atomic mass, A _r		
		define relative molecular mass, M _r		
	•	calculate relative molecular mass and relative formula mass		
		calculate the % mass of an element in a compound		
		calculate the empirical formula of a compound		
	•	calculate the molecular formula of a compound from the empirical formula and relative molecular mass		
		calculate the reacting masses of chemicals using information from equations and formula masses		
		understand the concept of the mole		
		calculate the volume of gas produced from a given number of moles and vice versa		
		calculate solution concentration using number of moles (or grams) and volume of solution		
		calculate number of moles (or grams) from solution concentration and volume		
		calculate % yield		
		calculate % purity		

Theme	Topic	You should be able to:	Comments	Checklist
4 Electrolysis		describe electrolysis as decomposition of an electrolyte	the	
-		 understand the meaning of the te electrolyte 	erm	
		understand that ionic compour conduct electricity only when molten dissolved in water		
		explain that electrolysis provide evidence for the existence of its which are in a lattice when solid move when molten or in solution	ons	
		 describe and explain the products electrolysis of molten lead brom using inert electrodes 		
		 predict the products of electrolysis of molten compound containing the simple ions 	of a dwo	
		 use ideas of selective discharge of ic to predict the products of electrolysis concentrated aqueous sodium chlori 	s of	
		 use ideas of selective discharge of ic to predict the products of electrolysis dilute sulphuric acid 		
		 use ideas of selective discharge of ic to predict the products of electrolysis aqueous copper(II) sulphate 		
		 predict the products of electrolysis an aqueous electrolyte 	of	
		construct ionic equations for reactions at the anode and catho during electrolysis (for substant mentioned in the syllabus)	ode	
		describe the electrolysis of purification aluminium oxide dissolved in molectryolite		
		 understand the electrode reactions the electrolysis of aluminium oxide cryolite 		
		know that bauxite is an ore aluminium	of	
		 understand why in the electrolysis aluminium oxide, the anodes have be periodically replaced 		
		describe the electrolysis of aqueous copper(II) sulphate with coppered electrodes for purifying copper		
		describe the electroplating of metals		

	•	recall the uses of electroplating	
	•	describe the production of electrical energy from simple cells (2 electrodes and an electrolyte)	

Theme	Topic	You should be able to:	Comments	Checklist
5 Energy from chemicals		 describe the meaning of enthalpy change in terms of exothermic (Δ H negative) and endothermic (Δ H positive) reactions 		
		show energy changes by energy profile diagrams (including those showing reaction pathways and activation energies)		
		describe bond breaking as endothermic and bond making as exothermic		
		 explain overall enthalpy changes in terms of energy changes in bond making and bond breaking 		
		describe the combustion of fuels as exothermic		
		 describe the use of hydrogen (from water or hydrocarbons) in fuel cells to generate electricity 		
		discuss the advantages and disadvantages of hydrogen as a fuel		
		 describe natural gas (methane) and petroleum as sources of energy 		
		 describe petroleum as a mixture of hydrocarbons 		
		describe the separation of petroleum into useful fractions by fractional distillation		
		 name the uses of petrol (gasoline), naphtha, paraffin (kerosene), diesel, lubricating oil and bitumen 		
		 describe photosynthesis as the reaction between carbon dioxide and water in the presence of sunlight (energy) and chlorophyll to produce glucose and oxygen 		
		explain how photosynthesis can provide a renewable energy resource		

Theme	Topic	You should be able to:	Comments	Checklist
6 Chemical reactions	6.1 Speed of reaction	describe the effect of concentration on the speed of reaction and explain this in terms of collisions between particles		
		describe the effect of pressure on the speed of reaction and explain this in terms of collisions between particles		
		describe the effect of particle size on the speed of reaction and explain this in terms of collisions between particles		
		describe the effect of temperature on the speed of reaction and explain this in terms of collisions between particles		
		define the term <i>catalyst</i> and describe the effect of catalysts on the speeds of reactions		
		state that enzymes are biological catalysts		
		explain how pathways with lower activation energy result in faster reactions		
		state that transition metals and their compounds act as catalysts in a range of industrial processes (synthesis of ammonia, sulfuric acid and margarine)		
		suggest suitable ways of investigating the effect of concentration, pressure, particle size and temperature on the speed of a reaction		
		interpret data (from graphs and tables) about the speed of reaction		
	6.2 Redox	define oxidation and reduction (redox) in terms of loss or gain of hydrogen or oxygen		
		define oxidation and reduction (redox) in terms of electron transfer		
		define redox in terms of change in oxidation state		
		describe the colour change when aqueous potassium iodide is used to test for oxidising agents		
		describe the colour changes when aqueous acidified potassium manganate(VII) is used to test for reducing agents		
		describe the colour changes when aqueous acidified potassium dichromate (VI) is used to test for reducing agents		

6.3 Reversible	understand that some reactions can be reversed by changing the conditions	
reactions	understand the characteristics of equilibrium reactions	
	predict the effect of changing the conditions on an equilibrium reaction	
	predict the effect of changing concentrations of reactants or products on an equilibrium reaction	
	predict the effect of changing the pressure on an equilibrium reaction	
	predict the effect of changing the temperature on an equilibrium reaction	

Theme	Topic	You should be able to:	Comments	Checklist
The chemistry of acids bases and salts	7.1 The properties of	describe the meaning of the terms acid and alkali in terms of the ions they contain or produce in aqueous solution		
	acids and bases	describe the meaning of the terms acid and alkali in terms of their effects on universal indicator paper		
		describe how to test for relative acidity/ hydrogen ion concentration using the pH scale		
		describe how acids react with metals		
		describe how acids react with bases		
		describe how acids react with carbonates		
		 describe the difference between strong and weak acids in terms of extent of ionisation (no calculations) 		
		describe neutralisation as a reaction between hydrogen ions and hydroxide ions to produce water.		
		describe the importance of controlling soil pH		
		describe how excess soil acidity can be treated using calcium hydroxide		
		describe the properties of bases in reactions with acids		
		describe the properties of bases in reactions with ammonium salts		
		 classify oxides as acidic, basic or amphoteric based on metallic/ non- metallic character 		
	7.2 Preparation	describe methods for the preparation and purification of salts by precipitation		
	of salts	describe methods for the preparation and purification of salts by titration		
		 describe methods for the preparation and purification of salts reaction of acids with metals, insoluble bases and insoluble carbonates 		
		describe nitrates and chlorides except silver and lead nitrates as being soluble in water		
		describe sulfates except barium, calcium and lead sulfates as being soluble in water		
		describe carbonates and hydroxides as being insoluble in water		

	to describe group I cations and ammonium salts as being soluble in water	
	suggest a method of preparing a given salt given suitable starting materials	
7.3 Properties and uses of ammonia	describe the use of nitrogen (from air) and hydrogen (from cracking oil fractions) in the manufacture of ammonia	
	state that some chemical reactions e.g. ammonia synthesis are reversible	
	describe the essential equations involved in the Haber Process	
	describe the essential conditions of the Haber Process (temperature 450°C, pressure 200 atm, iron catalyst)	
	describe the use of nitrogen-containing fertilisers in promoting plant growth and crop yield	
	calculate the % mass of nitrogen in some salts used for fertilisers	
	describe problems associated with the use of nitrogenous fertilisers in terms of high solubility	
	describe the process of eutrophication	
	describe the displacement of ammonia from its salts by heating with alkali	
	explain why adding calcium hydroxide to soil can cause the loss of nitrogen from added nitrogenous fertiliser.	
7.4 Sulphuric acid	describe the manufacture of sulfuric acid from sulphur, air and water by the Contact Process including relevant equations	
	describe the essential conditions used in the Contact Process (atmospheric pressure, temperature of 450°C and vanadium(V) oxide catalyst	
	state the uses of sulfur dioxide (bleach, manufacture of wood pulp, food preservative)	
	state the uses of sulfuric acid (battery acid and manufacture of detergents and fertilisers)	

Theme	Topic	You should be able to:	Comments	Checklis
8 The Periodic	8.1 Periodic trends	describe the Periodic Table as ar arrangement of elements in protor number order		
Table		describe how the position of ar element in the Periodic Table is related to proton number and electronic structure	1	
		describe how the ionic charge is related to the group number	3	
		explain the similarities between the elements in the same group in terms of electronic structure		
		describe the change in metallic to non- metallic character across a Period in the Periodic Table		
		describe the relationship between Group number , number of valency electrons and metallic or non- metallic character	<i>,</i>	
		predict the properties of elements in Group I, VII and the transition metals using relevant information		
	8.2 Group properties	describe Group I (the alkali metals Li Na, K) as a collection of relatively soft low density metals showing trends in melting points	,	
		 describe the reaction of Group metals with water and the trends in theses reactions 		
		describe Group VII (the halogens CI Br, I) as a collection of diatomic molecules showing trends in colour state		
		 describe Group the displacemen reactions of halogens with halide ions and the trend in these reactions 		
		describe Group 0 (the noble gases) as a collection of monatomic elements that are chemically unreactive		
	state the uses of helium neon and argon			
		 describe the lack of reactivity of the noble gases in terms of their electronic structure 		
	8.3 Transition elements	 describe transition elements as metals with high melting points, high density variable oxidation state and forming coloured compounds. 	,	

	 state the uses of transition metals (or their compounds) as catalysts (i) iron in Haber Process, (ii) vanadium(V) oxide in Contact Process, (iii) nickel in hydrogenation of alkenes. 	
	 describe how catalysts are used to lower the energy demands in industry and help conserve energy sources 	

Theme	Topic	You should be able to:	Comments	Checklist
9 Metals	9.1 Properties of metals	describe the physical properties of metals (solids with fairly high melting points, malleable, good conductors of heat and electricity) by reference to their structure.		
		describe an alloy as a mixture of a metal with another element.		
		identify metals and alloys from diagrams of their structures		
		explain why alloys have different properties from the pure elements they are made from.		
	9.2 Reactivity series	place in reactivity order the elements Ca, Cu, (H), Fe, Pb, Mg, K, Ag, Na, Zn by reference to their reactions with water and steam		
		place in reactivity order the elements Ca, Cu, (H), Fe, Pb, Mg, K, Ag, Na, Zn by reference to their reactions with dilute hydrochloric acid		
		place in reactivity order the elements Ca, Cu, (H), Fe, Pb, Mg, K, Ag, Na, Zn by reference to their reactions with reduction of their oxides by carbon or hydrogen		
		describe the reactivity series in terms of the ease with which a metal forms its positive ion by reference to the reaction of the metal (if any) with aqueous ions of the metals listed above		
		describe the reactivity series in terms of the ease with which a metal forms its positive ion by reference to the reaction of the metal (if any) with the oxides of the metals listed above		
		work out the order of reactivity from a set of experimental results		
		relate the thermal stability of the carbonates of the above metals to		

	their position in the reactivity series	
	their position in the readtivity series	
9.3 Extraction of metals	 relate the ease of obtaining a metals from its ore to its position in the reactivity series 	
	state that metals ores are finite resources and hence we need to recycle metals	
	discuss the social, economic and environmental advantages and disadvantages of recycling metals	
9.4 Iron	know that the main ore of iron is haematite and the other raw material used in the blast furnace	
	describe the reduction reactions (with equations) taking place in a blast furnace using coke	
	describe the thermal decomposition of the limestone added to the blast furnace and its reaction with silicon dioxide (including equations)	
	describe the raw materials enter the blast furnace and the products collect	
	describe steels as alloys which are mixtures of iron with carbon or other metals	
	describe how the controlled addition of additives such as carbon changes the properties of iron (with reference to low carbon and high carbon steels)	
	state the uses of mild steel and stainless steel	
	describe the conditions needed for iron to rust	
	 state the methods used to prevent iron from rusting by coating it (painting, greasing, coating with plastic, galvanising) 	
	describe and explain the sacrificial protection of iron by a metal higher in the reactivity series	
9.5 Aluminium	outline the manufacture of aluminium from aluminium oxide dissolved in cryolite, including the reactions at the electrodes.	
	explain the apparent lack of reactivity of aluminium	

	state the uses of aluminium and relate the uses to the properties of the metal and its alloys e.g. in the manufacture of aircraft		
--	--	--	--

Theme	Topic	You should be able to:	Comments	Checklist
10 Atmosphere	10.1 Air	state the % composition of nitrogeting and oxygen in dry air	en	
and environment		 describe the remainder of the air a being mainly argon with a sma amount of other noble gases ar carbon dioxide 	all	
		 describe the separation of oxyge nitrogen and the noble gases fro liquid air by fractional distillation 		
		 state the uses of oxygen (steelmakin oxygen tents in hospital oxyacetylene welding) 		
		 name the atmospheric pollutant carbon monoxide, methane, nitrogetoxides (NO and NO₂), ozone, sulph dioxide, hydrocarbons 	en	
	•	 state the source of carbon monoxic from incomplete combustion of carbo containing substances 		
		state the source of methane fro bacterial decay of vegetable matter	m	
		 state the source of nitrogen oxide from lightning activity and car engines 		
		state the source of ozone fro photochemical reactions	m	
		 state the source of sulphur dioxic from volcanoes and the combustion fossil fuels 		
		 state the source of (unburr hydrocarbons from car engines 	nt)	
	•	describe how redox reactions catalytic converters remove combustion pollutants		
		describe the use of calcium carbona to reduce the effect of acid rain and flue gas desulphurisation		
		state that carbon monoxide poisonous	is	
		describe the role of nitrogen dioxide and sulphur dioxide in the formation acid rain and the effect of acid rain obuildings and breathing	of	

	explain the importance of the ozone layer	
	 explain the problems involved in depletion of ozone by reaction with chlorine from CFC's. 	
	describe the carbon cycle in terms of combustion, respiration and photosynthesis	
	describe how the carbon cycle regulates the amount of carbon dioxide in the atmosphere	
	state that carbon dioxide and methane are greenhouse gases which contribute to global warming and give the sources of theses gases	
	describe the consequences of an increase in global warming	
10.2 Water	state that water from natural sources contains a variety of dissolved substances (mineral salts, oxygen, organic matter)	
	state some pollutants of water (metal compounds, sewage, nitrates and phosphates from fertilisers, detergents, harmful microbes)	
	state that some substances dissolved in water may be beneficial (oxygen and mineral salts for aquatic life)	
	state that some substances dissolved in water may be harmful (to health, eutrophication)	
	 describe in outline how water is purified (filtration to remove solids, carbon to remove tastes and odours, chlorination for disinfection) 	
	state that seawater can be converted to drinkable water by desalination	

Theme	Topic	You should be able to:	Comments	Checklist
11 Organic chemistry	11.0	state that the naphtha fraction from crude oil is the main source of hydrocarbons used as the feedstock for making a wide range of chemicals		
		describe issues about the competing uses of oil as an energy source and as a chemical feedstock		
	11.1 Alkanes	describe an homologous series in terms of a general formula of the molecules increase		
		describe the gradation of properties (melting and boiling points, viscosity, flammability) in an homologous series as the size of the molecules increase		
		 describe the alkanes as an homologous series of saturated hydrocarbons of general formula C_nH_{2n+2} 		
		 draw the structures of the branched and unbranched C1-C4 alkanes and name these. 		
		define isomerism and identify isomers		
		state that alkanes are generally unreactive except for combustion and substitution by chlorine in the presence of light		
		describe the combustion of alkanes (with equations)		
		describe the reaction of alkanes with chlorine in the presence of light (with equations)		
	11.2 Alkenes	 describe the alkenes as an homologous series of unsaturated hydrocarbons of general formula C_nH_{2n} 		
		draw the structures of the branched and unbranched C2-C4 alkanes		
		name the unbranched alkenes		
		describe the manufacture of alkenes and hydrogen by cracking hydrocarbons		
		 understand that cracking is essential to match the demand for fractions containing smaller molecules to the supply from the refinery 		
		 distinguish saturated from unsaturated hydrocarbons by reference to their structure and by using aqueous bromine 		

	describe the combustion of alkenes	
	describe the polymerisation of alkenes	
	describe the addition reactions of alkenes with bromine	
	describe the addition reactions of alkenes with steam	
	describe the addition reactions of alkenes with hydrogen	
	state the meaning of the term polyunsaturated as applied to food products	
	describe the manufacture of margarine by the addition of hydrogen to unsaturated vegetable oils to form a solid product	
11.3 Alcohols	describe the alcohols as an homologous series containing the –OH group	
	draw the structures of the C1-C4 alcohols	
	name the unbranched alcohols methanol to butanol	
	describe the combustion of alcohols	
	describe the oxidation of alcohols to carboxylic acids	
	Describe the formation of ethanol by addition of steam to ethene in the presence of a catalyst	
	Describe the formation of ethanol by fermentation of glucose	
	state some uses of ethanol (solvent, fuel, beverage)	
11.4 Carboxylic acids	 describe carboxylic acids as an homologous series containing the – CO₂H group 	
	name the carboxylic acids containing 1-4 carbon atoms	
	draw the structures of the C1-C4 alcohols	
	describe the formation of ethanoic acid by the oxidation of ethanol by atmospheric oxygen or acidified potassium dichromate(VI)	
	describe the formation of ethyl ethanoate by reacting ethanoic acid with ethanol	

	state some uses of esters (perfumes, flavourings, solvents)	
11.5 Macromole	describe macromolecules as large molecules built from small units	
es	state that different macromolecules have different units or linkages	
	describe the formation of poly(ethene) from ethene monomers as an example of addition polymerisation	
	state some uses of poly(ethene) (plastic bags, clingfilm)	
	work out the structure of a polymer product from a given monomer	
	work out the structure of a monomer from a given polymer	
	describe the polyamide, nylon and the polyester, Terylene as condensation polymers	
	describe the simplified structure of nylon and Terylene as shown in the syllabus	
	state some uses of man-made fibres such as nylon and Terylene	
	describe the pollution problems caused by the disposal of non- biodegradable plastics	
	identify carbohydrates, proteins and fats as natural macromolecules	
	describe proteins as having the same amide links as nylon but with different (and varied) monomer units	
	describe fats as esters possessing the same linkages as Terylene but with different units	
	describe the hydrolysis of proteins to amino acids	
	describe the hydrolysis of complex carbohydrates e.g. starch to simple sugars	

Appendices: Other things you need to know

There are **four** other things you need to know about your Chemistry course. These are shown below:

4.1 Using the Periodic Table

A copy of the Periodic Table is given on the back cover of the theory papers. You need to make sure that you know the layout of the table. You must remember that the mass number (number of protons + neutrons) is not the same as the relative atomic mass.

The main points to remember are:

- groups are the columns down the table
- periods are the rows across the table
- the first period only contains two elements, hydrogen and helium.
- the key shows the relative atomic masses and the proton (atomic) number of each element
- the volume of one mole of gas at r.t.p. is shown at the bottom of the Table.

A copy of the Periodic Table you will use is shown on the next page.

DATA SHEET
The Periodic Table of the Elements

	0	4 H elium	20 Neon	40 Ar Argon	84 Kr Krypton 6	E 0 6	T eb	
		, T ⊕	0 Z ₹	4 A 81	8 X Kry	131 Xe Xenon	Radon 86	
			Huorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85	
	5		16 Oxygen 8		79 Se Selenium 34	128 Te Tellurium 52	Po Polonium 84	
	>		14 N Nitrogen 7	31 P Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bis Bismuth	
	2		12 Carbon	4	73 Ge Germanium	So Tin 50	207 Pb Lead	
	=		Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 Tt Thallium	
					65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Merany 80	
					64 Cu Copper	108 Ag Silver 47	197 Au Gold	
Group					59 Ni Nickel Nickel	106 Pd Palladium 46	195 Pt Platinum 78	
Grc					59 Co Cobalt 27	103 Rh Rhodium 45	192 Ir Indium	
		1 T Hydrogen			56 Fe Iron 26	101 Ru Ruthenium 44	190 Os Osmium 76	
					55 Wn Manganese 25	Tc Technetium 43	186 Re Rhenium 75	
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74	
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73	
					48 Ti Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium 72	
					Scandium	89 Y Yttrium	139 La Lanthanum 57 *	227 Ac Actinium 89
	=		Beryllium	24 Mg Magnesium	40 Ca calcium	Strontium	137 Ba Barium 56	226 Rad Radium
	_		7 Lithium	23 Na Sodium	39 K Potassium	85 Rb Rubidium 37	133 Csesium 55	Fr Francium 87

175 Lu Lutetium 71	Lr Lawrencium 103
173 Yb Ytterbium 70	No Nobelium 102
169 Tm Thulium 69	Md Mendelevium 101
167 Er Erbium 68	Fm Fermium
165 Ho Holmium 67	ES Einsteinium 99
162 Dy Dysprosium 66	Californium 98
159 Tb Terbium 65	BK Berkelium 97
157 Gd Gadolinium 64	Cm Curium 96
152 Eu Europium 63	Am Americium 95
150 Sm Samarium 62	Pu Plutonium 94
Pm Promethium 61	Neptunium
144 Neodymium 60	238 U Uranium
141 Pr Praseodymium 59	Pa Protactinium 91
140 Ce Cerium 58	232 Th Thorium

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

b = proton (atomic) number

a = relative atomic mass X = atomic symbol

Key

*58-71 Lanthanoid series †90-103 Actinoid series

4.2 Notes for quantitative analysis

This is a table of chemical tests for particular chemical groups. You must learn and remember these tests for the theory papers (Papers 1, 2) and for Paper 4 (Alternative to Practical). However, if you are entered for Paper 3 (Practical Test), you will be given a copy of this table in the examination. When testing for specific ions in Paper 3, remember to use no more than 1cm depth of the solution to be tested and add a **small** (equal) amount of the test reagent at first and shake the test tube. Then make your observations. It is only after doing this that you add excess of the test reagent if required.

You should note the following points about this table:

- · anions are negatively charged ions
- cations are positively charged ions
- ppt. means precipitate
- 'in excess' means that you add a lot more of the test reagent (the chemical used for the testing)
- 'in solution' means that the substance is dissolved in water
- 'aqueous' means dissolved in water
- the tests for cations are for the cations 'in aqueous solution'

QUALITATIVE ANALYSIS NOTES (5070/3)

Tests for anions

anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide
		produced
chloride (Cl ⁻)	acidify with dilute nitric acid,	white ppt.
[in solution]	then add aqueous silver nitrate	
iodide (I ⁻)	acidify with dilute nitric acid,	yellow ppt.
[in solution]	then add aqueous lead(II) nitrate	
nitrate (NO ₃ -)	add aqueous sodium hydroxide	ammonia produced
[in solution]	then aluminium foil; warm	
	carefully	
sulfate (SO ₄ ²⁻)	acidify with dilute nitric acid	white ppt.
[in solution]	then add aqueous barium nitrate	

Tests for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium (A l^{3+})	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess
ammonium (NH ₄ ⁺)	ammonia produced on warming	-
calcium (Ca ²⁺)	white ppt., insoluble in excess	no ppt. or very slight white ppt.
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Tests for gases

gas	test and test result
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	"pops" with a lighted splint
oxygen (O ₂)	relights a glowing splint
sulfur dioxide (SO ₂)	turns aqueous potassium dichromate(VI) from orange to green

4.3 Command words and phrases used in chemistry examination Papers

Examiners use command words to help you to understand what they are looking for in your answer. This table explains what each of these words or phrases means and will help you to understand the kind of answer you should write. The list of command words is in alphabetical order. You should remember that the meaning of a term may vary slightly according to how the question is worded.

command word	meaning
Calculate	A numerical answer is needed. You should show any working,
	especially when there are two or more steps in a calculation.
	e.g. calculate the concentration of potassium hydroxide in the solution
Deduce	This may be used in two ways:
200000	i. You find the answer by working out the patterns in the
	information given to you and drawing logical conclusions from it.
	You may need to use information from tables and graphs and
	do chemical calculations <i>e.g.</i> deduce what will happen to the
	level of carbon dioxide if
	ii. You find the answer by referring to a scientific law or theory <i>e.g.</i>
	use your knowledge of the kinetic theory to deduce what will
	happen when
Define	You need to state the meaning of something <i>e.g.</i>
200	i. reduction is gain of electrons;
	ii. a hydrocarbon is a compound containing only hydrogen and
	carbon.
Describe	You need to state the main points about something (using labelled
	diagrams if this helps you). e.g. describe how metals and non-metals
	differ in their properties
	You may also be asked to describe either
	i. observations e.g. describe what you see when sodium reacts
	with water
	or
	ii. how to do particular experiments e.g. describe how to separate
	a mixture of coloured inks
Determine	You are expected to use a formula that you know to calculate a
	quantity.
	e.g. Determine the relative molecular mass of potassium sulphate
Discuss	You have to write down points for and against an argument
	e.g. discuss points for and against the use of petrol as a fuel
Estimate	This may be used in two ways :
	i. You need to work out an approximate value for a quantity,
	based on your knowledge of theory and the information
	provided. e.g. Estimate the boiling point of iodine.
	ii. for titrations, 'estimate' may also mean that you need to
	calculate an exact quantity. e.g. Estimate (the concentration of)
	sodium hydroxide
Explain	You have to give reasons for your answer
-	OR
	refer to a particular theory
	e.g. Explain why reaction rate increases with temperature
Find	This is a general term which can mean several similar things, such

	as solavilate massavira datarmaina ata	
l :at	as calculate, measure, determine etc.	
List	Write down a number of separate points. Where the number of points is	
	stated in the question, you should not write more than this number.	
	e.g. List three properties of metals	
Meant (What is	See 'Understand'	
meant by the		
term)		
Measure	You are expected to find a quantity by using a measuring instrument e.g. length (by using a ruler), volume (by using a measuring cylinder)	
Outline	State the main points briefly	
	e.g. Outline the process of extracting aluminium from pure	
	aluminium oxide	
Predict	This can be used in two ways:	
1 Tedict	i. You find the answer by working out the patterns in the	
	information provided and drawing logical conclusions from this.	
	You may need to use information from tables and graphs and	
	do chemical calculations. <i>e.g. Predict what will happen to the</i>	
	level of carbon dioxide if	
	ii. It may also mean giving a short answer stating what might	
	happen next. e.g. Predict what you would see when sodium	
Cleatab	iodide reacts with bromine water	
Sketch	i. When drawing graphs, this means that you may draw the	
	approximate shape and/or position of the graph BUT you need	
	to make sure that any important details, such as the line	
	passing through the origin or finishing at a certain point, are	
	drawn accurately.	
	ii. When drawing apparatus or other diagrams, a simple line	
	drawing is all that is needed, but you must make sure the	
	proportions are correct and the most important details are	
0.1	shown. You should always remember to label your diagrams.	
State	You should give a short answer without going into any detail, e.g. state	
	the name of the compound with the formula CuSO4:	
	BUT, remember that 'state the meaning of' is different. It is more	
	like 'understand'.	
Suggest	This may be used in two ways:	
	i. There may be more than one correct answer to the question.	
	e.g. suggest an ion that may be present in a mixture (after	
	adding a small amount of sodium hydroxide)	
	ii. You are being asked to apply your general knowledge of	
	chemistry or reasoning skills to a topic area that is not on the	
	syllabus e.g. applying ideas about reduction to a question on	
	the extraction of zinc.	
Understand (what	You should (i) define something and (ii) make a more detailed	
do you understand	comment about it. The amount of detail depends on the number of	
by the term)	marks awarded.	
	e.g. What do you understand by the term diffusion.	

4.4 The mathematical skills you need

This is a checklist of the maths skills you need for your chemistry exam.

Ask your teacher to explain any skills that you are unsure about. Tick the box in the checklist when you have learned each skill. The comment column is for extra notes and examples.

You can use a calculator for all the Papers. If your calculator is one that can be programmed, you should make sure any information in it is removed before the exam.

You can	Comments	Checklist tick
• add, subtract, multiply and divide		
• use averages		
• use decimals and fractions		
use percentages		
use ratios		
use reciprocals		
• recognise and use standard notation (notation is putting symbols for numbers e.g. x = 2, y = 5, atomic mass, Z = 12)		
use direct proportion (stepwise increases)	solving problems such as 3g of carbon dioxide are made by burning 2g of a fuel, how much fuel needs to be burnt to make 6g carbon dioxide?	
• use inverse proportion (inverse means turned up side down)	the inverse of 4 is 1/4 (= 0.25)	
• use numbers to the 'power of 10' e.g. $1x10^2 = 100$	Your calculator will often show number to the power of 10 when you do calculations. Do not worry too much though – your calculator does the work for you.	
draw charts	You will be given the data	
 draw graphs with line of best fit interpret: bar graphs pie charts line graphs 	You will be given the data	
interpret bar graphs		
 interpret pie charts 		

interpret line graphs		
• select suitable scales and axes for graphs		
make approximations	e.g. as you go down group 7, the melting points of the elements increase by about 100°C each time	
• use the formula: area = length x breadth		
• use the formula volume = length x breadth x height		
use and convert metric units into one another	e.g. 100cm = 1 m 1000g = 1 kg 1000cm ³ = 1 dm ³	
solve equations containing 3 terms, when two of the	moles = mass/ relative atomic mass can be solved for mass by rewriting it mass = moles x relative	
terms are known	atomic mass	
know the symbols <, >, \approx , /, α		
know about the use of significant figures		