Mark Scheme (Results) J anuary 2011

GCE 0

O Level Chemistry (7081) Paper 02

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

Alternately, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 08445760037
(If you are calling from outside the UK please dial +44 1204770696 and state that you would like to speak to the Science subject specialist).

J anuary 2011
All the material in this publication is copyright
© Edexcel Ltd 2011

SECTION A

Question 1

Question 2

(a) (i)	$\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}$	(1) (1)
(ii)	(There must be an attempt at a Ag equation to score in part (ii)	(1) (1) (2)
(iii)	M1 oxygen (must be name) M2 relights glowing spill (dependent on oxygen / O_{2} for M1)	(1) (1) (2)
(iv)	$4 \mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+4 \mathrm{e}^{-}$(or 4 e)	(1) (1)
(b) M 1 M2 M3 M4	impure silver (block) as the anode pure silver as the cathode use of silver nitrate or silver sulphate as electrolyte. $\mathrm{Ag} \rightarrow \mathrm{Ag}^{+}+\mathrm{e}^{-} \quad$ (dependent on correct electrodes) If impure Ag cathode and pure Ag anode used, lose M1 and M2 M3 use of silver nitrate or silver sulphate as electrolyte M4 $\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}$	(1) (1) (1) (1) (4)

Question 3

(a)	any three of floats / moves around the surface melts $\left(\mathrm{H}_{2}\right)$ (burns with a) lilac flame / catches fire effervesces / fizzes / bubbles (of gas formed)	(1) (1) (1) (3)
(b) (i)	M1 moles of potassium $=0.195 / 39=0.005$ M2 moles $\mathrm{KOH}=0.005 \quad$ (answer to M1) M3 conc $=0.005 \times \frac{1000}{200}=0.025\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \quad($ answer $\mathrm{M} 2 \times 5)$	(1) (1) (1) (3)
(ii)	higher because a greater number of moles of $\mathrm{Na} / \mathrm{NaOH}$	(1) (1)
(c)	green precipitate brown precipitate blue precipitate	(1) (1) (1) (3)

Question 4

Question 5

(a)	have the same molecular formula but with different structural formulae/ structures	(1) (1) (2)
(b)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ (or displayed formulae) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ $\mathrm{CH}_{3} . \mathrm{CH}^{2} \mathrm{CH}_{3}$ I OH (must be C - O bond)	(1) (1) (2)
(c) (i)	turns lime water milky / turbid / cloudy / white / chalky / white ppte	(1) (1)
(ii)	acid / contains a carboxyl group / contains COOH group $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ with COOH drawn out showing bonding	(1) (1) (2)
(iii)	$\mathrm{CH}_{3} \mathrm{COOCH}_{3}$ showing bonding in the ester group $\mathrm{HCOOC}_{2} \mathrm{H}_{5}$ showing bonding in the ester group	(1) (1) (1) (3)

SECTION B

Question 6

(a) (i)	limestone coke air	(1) (1) (1) (3)
(ii)	$\begin{aligned} & \mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \\ & \mathrm{CO}_{2}+\mathrm{C} \rightarrow 2 \mathrm{CO} \\ & \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2} \\ & \text { or } \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO} \end{aligned}$ (if both reduction equations given, both must be correct)	(1) (1) (1) (3)
(iii)	M1 use of limestone M2 slag / calcium silicate formed M3 $\quad \mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$ M4 $\mathrm{CaO}+\mathrm{SiO}_{2} \rightarrow \mathrm{CaSiO}_{3}$ (or $\mathrm{CaCO}_{3}+\mathrm{SiO}_{2} \rightarrow \mathrm{CaSiO}_{3}+\mathrm{CO}_{2}$ scores M3 and M4)	(1) (1) (1) (1) (4)
(b) (i)	M1 (appearance of Fe) turns red-brown / brown / orange-brown	(1) (1) (1) (1) (1) (1) (6)
(ii)	M1 filings have a greater surface area M2 more (frequent) collisions (between air / oxygen and Fe)	(1) (1) (2)

(c) (i)	```M1 magnesium fuse / burning magnesium / high temperature / \(1000^{\circ} \mathrm{C}\) (not heat) M2 glows red/white hot / molten iron formed/ yellow flame M3 \(\quad 2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}\)```	(1) (1) (1) (3)
(ii)	```Fe2OO}->2\textrm{Fe M1 use of 1 to 2 mole ratio either 160g Fe}\mp@subsup{2}{2}{}\mp@subsup{O}{3}{}->112g F OR moles of Fe =224/56=4 and moles of }\mp@subsup{\textrm{Fe}}{2}{}\mp@subsup{\textrm{O}}{3}{}= M2 320g of Fe2O}\mp@subsup{O}{3}{}\mathrm{ required```	(1) (1) (2)
(d)	M1 iron is a catalyst M2 speeds up the reaction	(1) (1) (2)

Question 7

(a)	M1 and M2 any 2 of similar / same chemical reactions graded physical properties same functional group successive members increase by $-\mathrm{CH}_{2}$	(1)		
M3 (1)				
M4 alkane is $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$				
alkene is $\mathrm{C}_{n} \mathrm{H}_{2 n}$				
(if general formula given but not related to the homologous				
series, assume the 15t formula is that of the alkane)			\quad	(b) (1)
:---				

Question 8

(a) (i)	M1 all have 7/ same number of electrons in the outer (valence) shell have 7 valence electrons $\begin{aligned} \text { M2 / M3 e.g. } \mathrm{H}_{2}+\mathrm{Cl}_{2} & \rightarrow 2 \mathrm{HCl} \\ \mathrm{H}_{2}+\mathrm{Br}_{2} & \rightarrow 2 \mathrm{HBr} \end{aligned}$	(1) (1) (1) (3)
(ii)	chlorine: yellow green / green gas bromine: red / brown / red-brown liquid iodine: black / dark grey solid (if zero marks scored allow (1) mark for 3 correct colours or 3 correct physical states)	(1) (1) (1) (3)
(iii)	With AgNO_{3} With $\mathrm{Br}_{2}(\mathrm{aq})$	(1) (7)

(b) (i)	basic oxide oxide of metal reacts / dissolves with acid $\begin{aligned} & \mathrm{MgO}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{MgO}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Mg}^{\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}} \\ & \mathrm{MgO}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$	(1) (1) (2)
(ii)	M1 Mg^{2+} M2 Cl^{-} M3 2.8 and 2.8.8 \quad (dependent on correct answers for M1 and M2)	(1) (1) (1) (3)
(iii)	M 1 MgCl_{2}, M 2 ionic compound / ionic bond / ionic strong attraction between ions much energy required to separate ions M3 HCl, M4 covalent compound / covalent bond / covalent weak (attractive) forces between molecules weak intermolecular forces weak van der Waals forces little energy reuires to separate molecules	(1) (1) (1) (1)
(iv)	M1 $M_{r} \mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ 246 M2 \% of w of $\mathrm{c} \quad(126 / 246) \times 100 \quad(126 / \mathrm{M1}) \times 100$ M3 answer $=51.2 \% \quad$ (answer to M2 provided 126 used in M2)	(1) (1) (1) (3)

Question 9

(a) (i)	to prevent Ti/ Na reacting with air / $\mathrm{O}_{2} / \mathrm{N}_{2}$ to prevent oxidation of $\mathrm{Ti} / \mathrm{Na}$ to provide an inert atmosphere	(1) (1)
(ii)	M1 $\quad \underline{\mathrm{NaCl}}$ dissolves in water / NaCl is soluble in water M2 filter off Ti	(1) (1) (2)
(iii)	Sodium / Na	(1) (1)
(b) (i)	$\mathrm{WO}_{3}+3 \mathrm{H}_{2} \rightarrow \mathrm{~W}+3 \mathrm{H}_{2} \mathrm{O}$	(1) (1)
(ii)	M1 no pollution / water is the product / no CO_{2} or CO or SO_{2} M2 $\quad \mathrm{H}_{2}$ is explosive / flammable	(1) (1) (2)
(c) M 1 M2 M3 M4 M5	sulphur dioxide (+water) form acid rain / is toxic / bronchial problems carbon monoxide is toxic / attacks haemoglobin etc carbon dioxide causes global warming / greenhouse effect $\mathrm{Ca}(\mathrm{OH})_{2}$ would absorb or reacts with or neutralises CO_{2} and / or SO_{2} calcium carbonate/ calcium sulphite (dependent on M4)	(1) (1) (1) (1) (1) (5)
(d) M 1 M2 M3 M4 M5	moles $\mathrm{CO}_{2}=480 / 24000=0.02$ moles of $\mathrm{MCO}_{3}=0.02 \mathrm{~mol}$ $(\mathrm{M} 2$ is answer to M 1$)$ $\mathrm{Mr}=2.50 / 0.02=125$ $(\mathrm{M} 3$ is $2.50 / \mathrm{M} 2)$ $\therefore \mathrm{M}=65$ $(\mathrm{M} 4=\mathrm{M} 3-60)$ M is zinc \quad (dependent on M 4 and must form $\left.\mathrm{MCO}_{3}\right)$	(1) (1) (1) (1) (1) (5)

(e) $\begin{aligned} & \\ & \\ & \\ & \\ & \\ & \text { M6 }\end{aligned}$		copper(II) oxide / CuO	(1)
	B	copper(II) nitrate / $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	(1)
	C	copper(II) hydroxide / $\mathrm{Cu}(\mathrm{OH})_{2}$	(1)
	D	$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+} /\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$	(1)
	E	is nitrogen dioxide / nitrogen(IV) oxide / NO_{2}	(1)
		$\mathrm{CuO}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$	(1)
		$\mathrm{CuO}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{H}_{2} \mathrm{O}$	
M7		$\mathrm{Cu}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}$	(1)
		$\begin{aligned} & \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{NO}_{3} \\ & \text { (accept } \mathrm{NH}_{4} \mathrm{OH} \text {) } \end{aligned}$	
M8		$2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{CuO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$	(1)
			(8)

Total 25 marks
TOTAL FOR SECTION B: 50 MARKS
TOTAL FOR PAPER: 100 MARKS

International Regional Offices at www.edexcel.com/international
For more information on Edexcel qualifications, please visit www.edexcel.com
Alternatively, you can contact Customer Services at www.edexcel.com/ ask or on +44 1204770696
Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

