Mark Scheme (Results) J anuary 2011

GCE 0

O Level Chemistry (7081) Paper 01

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

Alternately, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 08445760037
(If you are calling from outside the UK please dial +441204770696 and state that you would like to speak to the Science subject specialist).

J anuary 2011
All the material in this publication is copyright
© Edexcel Ltd 2011

Question 1						
	CaBr_{2}	(1)				
	ammonium nitrate	(1)				
	$\mathrm{Na}_{2} \mathrm{SO}_{3}$	(1)				
	$\mathrm{Cu}_{2} \mathrm{O}$	(1)				
	$\mathrm{lead}(\mathrm{IV})$ oxide/lead dioxide	(1)				
	$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	(1)				
		(6)				

Total 6 marks

Question 2

	pink / (from) blue to pink	
(a)	purple/ violet	(1)
(b)	yellow	(1)
(c)	white	(1)
(d)	brown/ red-brown	(1)
(e)	white	(1)
(f)		(1)
	(6)	

Total 6 marks

Question 3

(a)	carbon dioxide $/ \mathrm{CO}_{2}$ Allow ozone/ O_{3}	(1)
(b)	magnesium oxide/ MgO	(1)
(c)	calcium carbonate/ CaCO	
(d)	carbon monoxide/ CO or nitrogen oxide/ nitrogen(II) oxide/ nitric oxide/ nitrogen monoxide / NO or hydrogen chloride	(1)
(e)	calcium (f) (g)	sodium hydroxide/ NaOH or potassium hydroxide/ KOH oxygen $/ \mathrm{O}_{2}$
(1)		
(1)		

Total 7 marks

Question 4		
(a)	2,8,5	(1)
(b)	selenium/ Se	(1)
(c)	4	(1)
(d)	argon/ Ar	(1)
(e)	rubidium/ caesium/ francium/ $\mathrm{Rb} / \mathrm{Cs} / \mathrm{Fr}$	(1)
(f)	ionic	(1)
		(6)

Question 5

(a)	14	(1)
(b)	10	(1)
(c)	20	(1)
(d)	2	(1)
(e)	3	(1)
(f)	0.125 or $1 / 8$	(1)
		(6)

Question 6

\begin{tabular}{|c|c|c|}
\hline (a) \& \begin{tabular}{l}
solid: all particles touching \\
orderly arrangement \\
liquid: groups of particles touching (mainly 3 or more particles) and \\
groups randomly arranged \\
groups close to other groups \\
(allow some order) \\
or \\
lots of particles touching (with some spacing) \\
some randomness (but may be some order) \\
gas: particles well spaced \\
random distribution
\end{tabular} \& (1)
\((1)\)
(1)
(1)
(1)
\((1)\)

(1)
(1)
(6)

\hline (b) \& ice to water: particles (or molecules) need to be loosened/ intermolecular forces need to be partially overcome water to steam: particles have to be completely separated/ intermolecular forces have to be completely overcome (Not 'bonds break' unless hydrogen bonds) \& (1)
(1)
(2)

\hline
\end{tabular}

Question 7

(a) (i)	$2 \mathrm{Al}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{AlCl}_{3}$	formulae balance	(1) (1)	
	(ii)	$3 \mathrm{NaOH}+\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{NaNO}_{3}$	formulae balance balance	(1) (1)
	(iii)	$2 \mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$		(2)
(b)		formulae balance balance	(1)	

Total 7 marks

Question 8

(a) \quad oxidation is gain of oxygen/ loss of electrons/ increase in oxidation state / loss of hydrogen
(b) (i) Mg is oxidised because of loss of electrons/ increase in oxidation state
(ii) Ag^{\ddagger} is reduced because of gain of electrons $/ \mathrm{Ag}^{+}$decrease in oxidation state (of silver)/ silver(or $\mathrm{Ag} / \mathrm{Ag}+$) oxidation state goes from +1 to 0
(c) red-brown/ brown/ pink layer (of copper) formed (on magnesium) blue colour (of solution) fades/ disappears/ solution goes colourless

Question 9		
(a) (i)	N.B. question states 'use a line to represent a covalent bond'. 3 bonds from N to H correct pyramidal shape	(1) (1) (2)
(ii)	two double bonds from C to 0 linear shape	$\begin{array}{\|l\|} \hline(1) \\ (1) \end{array}$ (2)
(b) (i)	nitrogen: electrons in triple bond shown correctly other electrons shown correctly oxygen: electrons in double bond shown correctly other electrons shown correctly	(1) (1) (1) (1) (4)
(ii)	nitrogen has triple bond but oxygen has double bond triple bond stronger than double bond/ so harder to break/ more energy needed to break it Allow 1 mark for 'nitrogen has triple bond which requires high energy/ high temperature to break/ is very hard to break Mark (ii) independently of the answer in (i)	(1) (1) (2)

Question 10

(a)	(i)	same number of protons same number of electrons	(1) (1)
	(ii)	different numbers of neutrons/ one has 30 neutrons and one has 32	(1)
	(iii)	isotopes	(1)
(b)		56 Fe has the same number of neutrons	
(c)	same electron configuration/ same number of outer shell electrons/ same number of electrons	(1)	(1)
(d)	delocalised electrons / sea of electrons / cloud of electrons (if linked to movement of electrons) electrons can move	(1)	
(1)			

Question 11		
(a) (i)	$\text { moles: } \begin{array}{crc} \mathrm{C}=38.4 / 12 & \mathrm{H}=4.8 & \mathrm{Cl}=56.8 / 35.5 \\ 3.2 & 4.8 & 1.6 \\ \therefore 2: 3: 1 & & \end{array}$	(1) (1) (2)
(ii)	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}=24+3+35.5=62.5$ (hence formula is $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$)	(1) (1)
(iii)	displayed formula for $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ (allow t.e. if $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{Cl}_{2}$ in (ii))	$\begin{aligned} & \text { (1) } \\ & \hline \end{aligned}$
(iv)	polymer chain (any length) with extension bonds at each end	$\begin{aligned} & \text { (1) } \\ & \\ & \hline \end{aligned}$
(v)	heat/ high temperature/ elevated temperature or temperature in range 50-300C pressure or in range 10-2000 atm catalyst or (if specified) $\mathrm{O}_{2} /$ peroxide/ chromium oxide/ organometallic or Ziegler/ Natta catalyst	$\begin{array}{ll} \hline(1) & \\ (1) & \\ (1) & \\ & (3) \end{array}$
(b)	$\begin{aligned} & \mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH} \\ & \mathrm{H}_{2}{\mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}}^{\text {Allow } \mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}} \end{aligned}$	$\begin{array}{ll} \hline(1) & \\ (1) & \\ & \text { (2) } \end{array}$

Question 12		
(a)	(faint) pink/ colourless to pink	(1)
		(1)
(b)	plot of results all correct $=2$ (-1 for each	(2)
	error)	
	identity of erroneous point	(1)
	straight line of best fit	(1)
		(4)
(c) (i)	0.52 g (allow ± 0.02)	(1)
		(1)
(ii)	moles $\mathrm{NaOH}=0.025 \times 0.400=0.010$	(1)
	moles $\mathrm{H}_{2} \mathrm{X}=0.005$ allow t.e.	(1)
	$M_{r}\left(H_{2} \mathrm{X}\right)=0.52 / 0.005 \quad$ allow t.e. from (c)(i)	(1)
	$=104$	(1)
		(4)
(iii)	$\mathrm{M}_{\mathrm{r}}(\mathrm{A})=104$	(1)
	$M_{r}(B)=118$	(1)
	(acid is A)	
		(2)

Question 13		
(a)	flame test (or description) NaCl : yellow flame KCl: lilac flame (allow pink)	(1) (1) (1) (3)
(b)	named indicator colour for ammonia colour for sulphur dioxide Or conc. $\mathrm{HCl} /$ conc. hydrochloric acid or hydrogen chloride/ HCl white fumes with ammonia no reaction with sulphur dioxide Or add potassium dichromate/ potassium manganate(VII) (or permanganate) no reaction with ammonia turns (orange to) green or (purple to) colourless	(1) (3)
(c)	allow any acid e.g. $\mathrm{HCl} / \mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$ Note: do not give a mark for concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ but allow the marks that follow. Concentrated HCl and HNO_{3} are correct. If just 'add acid', allow 2nd and 3rd marks. MgO: no bubbles (of gas)/ does not fizz/ just dissolves (not 'no reaction') MgCO_{3} : bubbles/ fizzes/ effervesces Or acids as above + use of lime water (mentioned here or later) MgO: no bubbles (of gas)/ does not fizz/ just dissolves (not 'no reaction') MgCO_{3} : gas evolved turns lime water milky, etc. Or Heat Mg: no reaction $\mathrm{Mg} \mathrm{CO}_{3}$: gas evolved turns lime water milky	

Further copies of this publication are available from
International Regional Offices at www.edexcel.com/international
For more information on Edexcel qualifications, please visit www.edexcel.com
Alternatively, you can contact Customer Services at www.edexcel.com/ ask or on +44 1204770696
Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

