Mark Scheme (Results) Summer 2010

GCE 0

GCE 0 Chemistry (7081) Paper 02

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

Alternately, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 08445760037
(If you are calling from outside the UK please dial +44 1204770696 and state that you would like to speak to the Science subject specialist).

Summer 2010
All the material in this publication is copyright
© Edexcel Ltd 2010

7081/02 O-LEVEL CHEMISTRY MARK SCHEME - SUMMER 2010

SECTION A

Total 10 marks

Question 2			
(a)	(i)	$\mathrm{C}_{n} \mathrm{H}_{2 n+2}$	(1)
	(ii) M1 M2 M3	correct bonding (M1 for $4 \mathrm{C}-\mathrm{H}$ bonds irrespective of shape) correct shape (3-D effect not needed) (dependent on $4 \mathrm{C}-\mathrm{H}$ bonds) tetrahedral / tetrahedron (M3 for name of shape and mark independent of M1/M2) (do not accept tetragonal) (Stick diagram showing 4 lines arranged tetrahedrally scores M2 but not M1)	(1) (1) (1)
	(iii)	chemical properties unchanged / are the same / are similar	(1)
		e.g. boiling point increases / density increases (do not accept increase in mass / M_{r} / chain length / physical state changes from gas to liquid)	(1)
(b)	(i)	(compounds / molecules with the) same molecular formula but different structures / structural formulae (penalise elements with the same molecular.........)	(1)
	(ii)	displayed structure for $\mathrm{CH}_{2} \mathrm{Cl} . \mathrm{CH}_{2} \mathrm{Cl}$ displayed structure for $\mathrm{CH}_{3} . \mathrm{CHCl}_{2}$ (ignore names)	$\begin{aligned} & \text { (1) } \\ & (1) \end{aligned}$
	(iii)	$\mathrm{CH}_{2} \mathrm{Cl}$	(1)

Question 3			
(a)		burette	(1)
(b)	M1	e.g. methyl orange \quad / \quadphenolphthalein (do not accept litmus)	(1)
	M2	yellow to orange / red / pink / violet to colourless (M 2 is for the colour change and dependent on M1)	(1)
(c)		swirl / shake / stir (contents or flask)	(1)
		add dropwise near end-point / add slowly near end point	(1)
		wash down sides of flask (with water) use of white tile (Any two)	
		(ignore rinsing out burettes etc, meniscus readings etc)	
(d)	(i)	Rough titration / overshot end-point / too much (sulphuric) acid added	(1)
	(ii)	$25.65\left(\mathrm{~cm}^{3}\right)$	(1)
	(iii)	(in this question penalise answers less than 3 sf once only)	(1)
	M1	moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=0.05 \times 0.02565=1.283 \times 10^{-3}$ (0.05 x answer to d(ii))	
	M2	$\text { moles } \mathrm{NaOH}=2.566 \times 10^{-3}$ $\text { (M2 = } 2 x \text { answer to } \mathrm{M} 1 \text {) }$	(1)
	M3	$\begin{aligned} & \text { concentration of } \mathrm{NaOH}=2.566 \times 10^{-3} / 0.025=0.1026\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ &(\text { accept } 0.102 \text { to } 0.103) \\ &(\mathrm{M} 3=\mathrm{M} 2 / 0.025) \\ & \text { (ans } 0.1026 \text { followed by } 0.1 \text { loses M3) } \\ & \text { (ignore units) } \end{aligned}$	(1)
OR	$\begin{aligned} & \text { M1 } \\ & \text { M2 } \\ & \text { M3 } \end{aligned}$	$\begin{aligned} & (0.05 \times 25.65)=\left(m_{2} \times 25\right) \\ & (0.05 \times 25.65) / 1=\left(m_{2} \times 25\right) / 2 \\ & =0.1026 \quad \text { (must not be less than } 3 \mathrm{sf}) \end{aligned}$	

Question 4			
(a)	(i)	$4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$	(1)
	(ii)	platinum or platinum-rhodium or Pt or Pt -Rh	(1)
	(iii)	Any temperature in range $800-1000{ }^{\circ} \mathrm{C}$	(1)
	(iv)	reaction is exothermic or reaction gives out heat	(1)
(b)	M1	$M_{r}(\mathrm{NO})=30$	(1)
	M2	$\begin{aligned} & 30 \mathrm{~g} \text { has a volume of } 30 \times(112 / 0.150) \mathrm{cm}^{3} \\ & \left(\mathrm{M}_{1} \times(112 / .150)\right) \end{aligned}$	(1)
	M3	$=22400 \mathrm{~cm}^{3}\left(\text { or } 22.4 \mathrm{dm}^{3}\right)$ (answer to M2)	(1)
OR	M1	$\mathrm{M}_{\mathrm{r}} \mathrm{NO}=30$	
	M2	moles of NO $=0.15 / 30=0.005$	
	M3	volume of I mole $=112 / 0.005=22400 \mathrm{~cm}^{3}$	
(c)		$200 \mathrm{~cm}^{3} / 200 / 0.2 \mathrm{dm}^{3} / 0.20 \mathrm{dm}^{3} / 0.200 \mathrm{dm}^{3}$	(1)
		(NOT 0.2 on its own)	
(d)	(i)	number of (specified) particles in 1 mole (of particles / substance)	(1)
	(ii)	$0.02 \mathrm{~L} \mathrm{OR} \mathrm{L/50}$	(1)

Question 5			
(a)	(i) (ii) (iii) (iv) (v) (vi) (vii)		(1) (1) (1) (1) (1) (1) (1)
(b)	M1	Mr_{r} of $\mathrm{CoCl}_{2}=130$	(1)
	M2	$\begin{aligned} \mathrm{xH}_{2} \mathrm{O}=238-130= & 108 \\ & (M 2=238-M 1) \\ & \left(\text { if } M_{r}>238 \text { scores zero }\right) \end{aligned}$	(1)
	M3	$x=6$	
		$130+18 x=238$ scorers M1 and M2	

Total 10 marks

SECTION B

(b)	M1	(experiment M1 to M6) (D) in M1, 2,3 can be scored from a diagram copper pieces placed in glass tubing (D)	(1)
	M2	one of the syringes is set at $100 \mathrm{~cm}^{3}$ / stated volume / full of air (the other at $0 \mathrm{~cm}^{3} /$ empty) 2 syringes have a specified total volume (D) (2 syringes, 1 containing air scores M2 but check figures before giving M8)	(1)
	M3	copper is heated (D)	(1)
	M4	air is passed OR shunted back and to over copper (by pushing each syringe several times) air is passed continually over copper (M4 is for the idea that air is continually passed over Cu do not accept "air is passed over Cu")	(1)
	M5	until no further change in volume / volume is constant / volume remains or is constant at $78 / 79 / 80 \mathrm{~cm}^{3}$ (could score M8 as well)	(1)
	M6	allow to cool (M7 and 8, are for the observations)	(1)
	M7	copper turns black / black copper oxide formed** (**could score M9 for CuO)	(1)
	M8	remaining volume should be $80 / 79 / 78 \mathrm{~cm}^{3}$ volume OR decrease of $20 / 21 / 22 \mathrm{~cm}^{3}$ (if alternative vol given in M2, score M8 for corresponding final vol remaining vol and decrease in vol must be given if statement in brackets given in M2)	(1)
	M9	(M9 and M10 are for the explanation and equation) Copper has reacted with oxygen / copper has removed oxygen / Copper is oxidised / CuO formed (do not accept Cu reacts with air)	(1)
	M10	$2 \mathrm{Cu}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CuO}$	(1)

(c)	(i)	a fuel (burns to) give out heat or energy / source of heat or energy / provides heat or energy	(1)
	(ii)	$\mathrm{C}_{8} \mathrm{H}_{18}+12^{1} 2 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}$ formulae	(1)
		(equation can be doubled) NOTE TWO MARKS balance	(1)
		NAME carbon monoxide	(1)
	M1	CO_{2} dissolves in water / soluble in water / reacts with water / dissolves in water vapour and falls as acid rain	(1)
	M2	forms carbonic acid / H^{+}ions / $\mathrm{H}_{2} \mathrm{CO}_{3} / \underline{\text { more acidic solution }}$	(1)
	M3	$\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ or $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow 2 \mathrm{H}^{+}+\mathrm{CO}^{2-}$	(1)
		or $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}{ }^{\text {- }}$	
	(iv)	Global warming / greenhouse gas / effect (do not accept acid rain)	(1)

Question 7

\begin{tabular}{|c|c|c|c|}
\hline (b) \& M1 \& NAME hydrogen chloride (gas) (do not accept hydrochloric acid) \& (1)

\hline \& M2
M3
M4
M5

(i)
M1

M2
M3

M4 \& | sunlight / uv light / light / ignite / flame / burn / heat high temperature |
| :--- |
| (ignore mention of pressure) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$ |
| acidic in aqueous solution / when water present |
| gives $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$/ hydrochloric acid / $\mathrm{HCl}(\mathrm{aq})$ |
| (M5 dependent on M4) |
| (vegetable) oil / fat / (tri)glyceride / ester of glycerol |
| (M1 could be scored from a structure of oil/fat in an equation) |
| (do not allow ester alone) |
| boil/ heat with (aqueous) NaOH |
| cooled (to precipitate soap) / salt out soap |
| filter (off soap) / take off (soap) crust / equation |
| (minimum oil/fat/ester + alkali \rightarrow soap + glycerol either as word equation or as formulae) |
| if formulae used in equation, |
| must have correct formula or structure |
| for oil/fat, |
| for glycerol |
| and for sodium salt |
| (allow use of R for long chain acid) |
| equation need not balance | \& (1)

(1)
(1)
(1)

(1)

(1)
(1)
(1)

\hline \& $$
\begin{aligned}
& \hline \text { (ii) } \\
& \text { M1 }
\end{aligned}
$$ \& displayed formula of methyl ethanoate \& (1)

\hline \& M2 \& NAME ethanoic acid \& (1)

\hline \& M3 \& NAME methanol \& (1)

\hline (d) \& M1 \& metals have delocalised electrons / sea of electrons \& (1)

\hline \& M2 \& electrons move / flow / mobile (not free electrons) \& (1)

\hline
\end{tabular}

Total 25 marks

\begin{tabular}{|c|c|c|c|}
\hline (b) \& $$
\begin{aligned}
& \text { (ii) } \\
& \text { M1 }
\end{aligned}
$$ \& covalent bond formed / covalent molecule \& (1)

\hline \& M2
M3

M4

M5 \& | by electrons (pair) sharing |
| :--- |
| (do not accept e sharing between oxygen molecules) |
| to complete outer shell / both atoms need to gain electrons / atoms need two electrons |
| (M4/ M5 for diagram of bonding) |
| must show 2 bond pairs between the two 0 atoms |
| must show 2 lone pairs on each 0 atom |
| (M5 dependent on M4 being scored) |
| (Any reference to ionic bond instead of covalent negates only M1 if rest of the answer relates to covalent bonding) | \& (1)

(1)

(1)
(1)

\hline \& (iii) \& both metals need to lose electrons \& (1)

\hline (c) \& M1
M2

M3 \& | outer electron further from nucleus / atoms increase in size / more electron shells / more shielding less attraction for outer electrons outer electron lost more easily |
| :--- |
| (need reference to 'outer shell' somewhere to score 3 marks) (accept valence shell as outer shell) | \& (1)

(1)
(1)

\hline (d) \& M1 \& noble gases / inert gases / group 0 \& (1)

\hline \& M2 \& | complete outer shells / 8 electrons in outer shell / no tendency to lose or gain electrons |
| :--- |
| (M2 is dependent on M1) |
| (allow valency shell for outer shell) | \& (1)

\hline \& \& \&

\hline \& \& \&

\hline
\end{tabular}

Question 9

		In part (b) allow marks for the formulae of the ions ONLY. Ignore any names or formulae for compounds	
(b)	(i)	P: Ca^{2+}	(1)
		1^{-}	(1)
	(ii)	R: K^{+}	(1)
		$\mathrm{SO}_{3}{ }^{\text {- }}$	(1)
	(iii)	T: H^{+}	(1)
		Cl^{-}	(1)
		$\begin{array}{\|lll} & \mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \\ \mathrm{OR} & \mathrm{Mg}+2 \mathrm{H}^{+} \rightarrow \mathrm{Mg}^{2+}+\mathrm{H}_{2} \end{array}$ (If T is an incorrect acid eg $\mathrm{H}_{2} \mathrm{SO}_{4}$, allow 1 mark for a correct equation)	(1)
(c)		(if both name and formula given for X, Y and Z , both must be correct to score)	
		$\mathbf{X}=\mathrm{C}_{8} \mathrm{H}_{18} /$ octane	(1)
		$\mathbf{Y}=\mathrm{C}_{3} \mathrm{H}_{6} /$ propene	(1)
		$\mathbf{Z}=\mathrm{C}_{5} \mathrm{H}_{12} /$ pentane (a correct equation: $\mathrm{C}_{8} \mathrm{H}_{18} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{5} \mathrm{H}_{12}$ scores (3) marks	(1)
		$\begin{aligned} & \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}_{2} \\ & \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{Br}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CHBr} . \mathrm{CH}_{2} \mathrm{Br} \end{aligned}$	(1)
		(if $\mathrm{C}_{5} \mathrm{H}_{10}$ and $\mathrm{C}_{3} \mathrm{H}_{8}$ are given as products, allow the equation $\left.\mathrm{C}_{5} \mathrm{H}_{10}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{Br}_{2}\right)$	

Total 25 marks

SECTION B TOTAL: 50 MARKS

PAPER TOTAL: 100 MARKS

Further copies of this publication are available from
International Regional Offices at www.edexcel.com/ international
For more information on Edexcel qualifications, please visit www.edexcel.com
Alternatively, you can contact Customer Services at www.edexcel.com/asktheexpert or on +441204770696
Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

