

Mark Scheme Summer 2009

GCE

GCE O Level Chemistry (7081)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call our Customer Services on + 44 1204 770 696, or visit our website at www.edexcel.com.

Summer 2009

All the material in this publication is copyright © Edexcel Ltd 2009

Contents

		Page
1.	7081/01 (Paper 1) Mark Scheme	1
2.	7081/02 (Paper 2) Mark Scheme	15

7081/01 O Level Chemistry Mark Scheme - June 2009

Question	Acceptable Answers	Reject	Mark
Number			
1	column 1 iron(III) oxide / ferric oxide		(1)
	column 2 (NH ₄) ₂ SO ₄		(1)
			(1)
	column 3 NH ₄ ⁺		(1)
	Sn ²⁺ Fe ³⁺		(1)
			(1)
	column 4 NO ₃ -		(1)
	PO ₄ ³⁻		

Question	Acceptable Answers	Reject	Mark
Number			
2 (a)	hydrochloric acid / HCI /hydrogen chloride hydrogen / H ₂		(1) (1)

Question Number	Acceptable Answers	Reject	Mark
2 (b)	hydrogen / H ₂		(1)

Question	Acceptable Answers	Reject	Mark
Number			
2 (c)	oxygen / O ₂		(1)

Question	Acceptable Answers	Reject	Mark
Number			
2 (d)	nitrogen dioxide / nitrogen(IV) oxide /		(1)
	NO_2		

Question Number	Acceptable Answers	Reject	Mark
2 (e)	sodium sulph <u>ite</u> / sodium sulphate(IV) / Na ₂ SO ₃ or sodium hydrogensulph <u>ite</u> /sodium bisulph <u>ite</u> /NaHSO ₃		(1)

Question Number	Acceptable Answers	Reject	Mark
3 (a)	В		(1)
Question	Acceptable Answers	Reject	Mark
Number			
3 (b)	E		(1)
Question	Acceptable Answers	Reject	Mark
Number			
3 (c)	A		(1)
Question	Acceptable Answers	Reject	Mark
Number			
3 (d)	D		(1)
Question	Acceptable Answers	Reject	Mark
Number			
3 (e)	С		(1)

Question	Acceptable Answers	Reject	Mark
Number			
4 (a)	127	127g	(1)
Question	Acceptable Answers	Reject	Mark
Number			
4 (b)	30		(1)
Question	Acceptable Answers	Reject	Mark
Number	·		
4 (c)	20		(1)
		•	
Question	Acceptable Answers	Reject	Mark
Number	·		
4 (d)	4		(1)
		•	•
Question	Acceptable Answers	Reject	Mark
Number			
4 (e)	18		(1)
	•	·	• •
Question	Acceptable Answers	Reject	Mark
Number			
4 (f)	2,8,6 / 2:8:6 / 2 8 6		(1)
	Order of number must be correct		

Question Number	Acceptable Answers	Reject	Mark
5 (a)	white		(1)
Question Number	Acceptable Answers	Reject	Mark
5 (b)	purple / violet		(1)
Question Number	Acceptable Answers	Reject	Mark
5 (c)	(pale) blue dark blue <i>(must indicate that the</i> <i>colour has darkened)</i>		(1) (1)
Question Number	Acceptable Answers	Reject	Mark
5 (d)	yellow / orange / brown or any combination of the acceptable colours	Reject red	(1)
Question Number	Acceptable Answers	Reject	Mark
5 (e)	(pale) pink		(1)
			-
Question Number	Acceptable Answers	Reject	Mark
5 (f)	white	Reject milky/chalky unless accompanied by 'white'	(1)

Question Number	Acceptable Answers	Reject	Mark
6 (a)(i)	3,3		(1)

Question Number	Acceptable Answers	Reject	Mark
6 (a)(ii)	2,4		(1)

Question	Acceptable Answers		Reject	Mark
Number				
6 (b)(i)	$2AI + 3Br_2 \rightarrow 2AIBr_3$	formulae		(1)
		balance		(1)

Question	Acceptable Answers	Reject	Mark
Number			
6 (b)(ii)	$Ca(OH)_2 + 2NH_4CI \rightarrow CaCI_2 + 2NH_3 +$		
	2H₂O		(1)
	formulae		(1)
	balance		

Question	Acceptable Answers	Reject	Mark
Number			
6 (c)			
	$Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3$		
	formulae of ions on left hand side		(1)
	A balanced equation		(1)
	(Ignore any state symbols)		

Question	Acceptable Answers	Reject	Mark
Number			
7 (a)(i)	order 3,1,2		(1)

Question Number	Acceptable Answers	Reject	Mark
7 (a)(ii)	magnesium is more reactive (than iron) reacts before the iron /is a sacrificial metal Explanation accepted only if experiment 2 is chosen as slowest in 7(a)(i)	Mg rusts before iron	(1) (1)

Question	Acceptable Answers	Reject	Mark
Number			
7 (b)(i)	nail in test tube with suitable drying agent (anhydrous calcium chloride or silica gel)	conc. H ₂ SO ₄ anhydrous CaCl ₂ (aq)	(1)
	allow CaO bung in top of test tube		(1)

Question	Acceptable Answers	Reject	Mark
Number			
7 (b)(ii)	nail in boiled water		(1)
	layer of oil on top (or similar)		(1)
	allow a bung if there is no air space		

Question Number	Acceptable Answers	Reject	Mark
8	A is platinum / platinum-rhodium / Pt / Pt-Rh B is nitrogen oxide / nitrogen(II) oxide / nitric oxide / NO (accept nitrogen monoxide) C is nitrogen dioxide / nitrogen(IV) oxide / NO ₂ D is nitric acid / nitric(V) acid / HNO ₃	D Ignore any reference to nitrous acid / HNO ₂	(1) (1) (1) (1)

Question Number	Acceptable Answers	Reject	Mark
9 (a)	sulphur dioxide/SO ₂ Gas must be correct in order to score test marks.		(1)
	potassium dichromate(VI) / K ₂ Cr ₂ O ₇ or potassium manganate(VII) / potassium permanganate / KMnO ₄ Penalise an incorrect oxidation state but		(1)
	allow the colour change potassium dichromate(VI) turns green or potassium manganate(VII) is decolourised		(1)

Question Number	Acceptable Answers	Reject	Mark
9 (b)	flame test lilac/purple/pink flame		(1) (1)

Question	Acceptable Answers	Reject	Mark
Number		_	
10 (a)	ions present/H ⁺ , Cl ⁻ , (OH ⁻) present		(1)
	molecules present		(1)

Question Number	Acceptable Answers	Reject	Mark
10(b)(i)	Mark each part independentally H ⁺ (aq) / hydrated proton /hydrated hydrogen ion / hydronium ion / hydroxonium ion Allow H ⁺		(1)
	$CO_3^{2-}(aq)$ or (s) + $2H^+(aq)$ \rightarrow $CO_2(g)$ + $H_2O(I)$ equation state symbols (allow if correct ions present in unbalanced equation)	equations giving H ₂ CO ₃ as the final product	(1) (1)

Question Number	Acceptable Answers	Reject	Mark
10(b)(ii)	No H ⁺ (aq) (etc) present /no ions present (from HCI)/ HCI exists as molecules		(1)

Question Number	Acceptable Answers	Rejec	:t	Mark
11 (a)	gas / carbon dioxide given off			(1)
Question Number	Acceptable Answers	Rejec	ct	Mark
11 (b)	to stop spray/acid/water escaping			(1)
Ougation	Accordable Assurance	D-:		Mank
Question Number	Acceptable Answers	Rejec		Mark
11 (c)	plot (lose 1 mark for any one error) smooth curve (allow t.e. from incorrect plot)			(2)
Question Number	Acceptable Answers	Rejec	t	Mark
11 (d)(i)	fast(est) at the start then slows/rate decreases (with time)			(1)
Question	Acceptable Answers		Reject	Mark
Number	Acceptable Allsweis		Reject	IVIAIK
11(d)(ii)	HNO ₃ / H ⁺ / reactants used up <i>or</i> concentration decreases / less reactant particles			(1)
	less frequent / less chance of collision	S		(1)
Question	Acceptable Answers		Reject	Mark
Number 11 (e)	any two of			
11 (e)	increase temperature increase concentration of <u>acid</u> use smaller pieces (of marble) (not justincrease surface areas)	st	use a catalyst	(1) (1) (1)
Question	Acceptable Answers		Reject	Mark
Number	Acceptable Alliswers		Reject	Wark
11 (f)	0.56 g of CO ₂ = 0.56/44 mol (= 0.0127 or 0.013)			(1)
	volume of gas = 24000 x no. of moles calculate	ed		(1)
	above Accept as answers			
	300 / 304.8 / 305 / 310 / 312 cm ³ or 0.30 / 0.3048 / 0.305 / 0.31 / 0.3 dm ³			
	correct unit required allow t.e. from incorrect moles			

Number 12 (a)(i) isotopes Question Acceptable Answers Number 12(a)(ii) mark vertically: 92 protons, 92 protons 143 neutrons, 146 neutrons (order must be	(1) Mark (1) (1) (1) (1)
Question Acceptable Answers Number 12(a)(ii) mark vertically: 92 protons, 92 protons 143 neutrons, 146 neutrons (order must be	Mark (1) (1)
Number 12(a)(ii) mark vertically: 92 protons, 92 protons 143 neutrons, 146 neutrons (order must be	(1) (1)
Number 12(a)(ii) mark vertically: 92 protons, 92 protons 143 neutrons, 146 neutrons (order must be	(1) (1)
12(a)(ii) mark vertically: 92 protons, 92 protons 143 neutrons, 146 neutrons (order must be	(1)
92 protons, 92 protons 143 neutrons, 146 neutrons (order must be	(1)
143 neutrons, 146 neutrons (order must be	(1)
· · · · · · · · · · · · · · · · · · ·	
	(1)
correct)	
92 electrons, 92 electrons	
Allow transferred error from 'protons' column	
Question Acceptable Answers Reject	Mark
Number	4-1
12(a)(iii) same number of electrons (in outer shell)	(1)
Question Acceptable Answers Reject	Mark
Number	(1)
12(b)(i) L / 1L (Ignore any other figures or working)	(1)
Question Acceptable Answers Reject	Mark
Number	
12(b)(ii) 10L (Ignore any other figures or working)	(1)
Question Acceptable Answers Reject	Mark
Number	
12(b)(iii) 4L (Ignore any other figures or working)	(1)

Question Number	Acceptable Answers	Re	eject	Mark
13(a)(i)	—CONH— (correctly displayed)			(1)
- (-)()	(2011. (2011.2011.)			, ,
Question Number	Acceptable Answers		Reject	Mark
13(a)(ii)	condensation Accept addition-elimination condensation		'polyamide' on its own 'addition condensation'	(1)
Question Number	Acceptable Answers	Re	eject	Mark
13(b)(i)	displayed formula of monomer			(1)
		_		1
Question	Acceptable Answers	Re	eject	Mark
Number 13(b)(ii)	displayed formula of repeating unit			(1)
13(0)(11)	displayed formula of repeating unit			(1)
Question Number	Acceptable Answers	Re	eject	Mark
13(b)(iii)	addition (polymerisation)			(1)
Question Number	Acceptable Answers		Reject	Mark
13(b)(iv)	monomer is unsaturated because it has a double bond	S		(1)
	polymer is saturated because it has single bonds (only)/does not contain double bonds			(1)
Question Number	Acceptable Answers	Re	eject	Mark
13(b)(v)	displayed formula of CH ₂ CICHCl ₂			(1)

Question	Acceptable Answers	Reject	Mark
Number 14(a)	Any two of metal conducts electricity, non-metal does not (accept only metals conduct electricity) metal has a high m.pt., non-metal has a low m.pt. (accept metal has higher m.pt.) metal is malleable/ductile, non-metal is brittle (accept only metals are malleable/ductile) metal is shiny, non-metal is dull (accept only metals are shiny) metal conducts heat well, non-metal poor (accept metals are better conductors of heat) metals usually solids, non-metals gases or liquids (or solids)	metals strong /hard, non- metals weak/soft	(1) (1)
	metals sonorous, non-metals are non-sonorous		

Question	Acceptable Answers	Reject	Mark
Number			
14(b)(i)	Mark each part independentally CaO + $H_2O \rightarrow Ca(OH)_2$		(1)
	calcium hydroxide (only)	if any other products present	(1)

Question Number	Acceptable Answers	Reject	Mark
14(b)(ii)	Mark each part independentally $SO_2 + H_2O \rightarrow H_2SO_3$		(1)
	sulphurous acid / sulphuric(IV) acid	if any other products present	(1)

Question	Acceptable Answers	Reject	Mark
Number			
14(c)(i)	Ca ²⁺		(1)
	electron arrangement 2,8,8		(1)
	O^{2-}		(1)
	electron arrangement 2,8		(1)

Question	Acceptable Answers	Reject	Mark
Number			
14(c)(ii)	ionic bond is the (electrostatic) <u>attraction</u> between oppositely charged ions /between Ca ²⁺ and O ²⁻	if any reference to atoms or molecules	(1)

PAPER TOTAL 100 MARKS

7081/02 O Level Chemistry Mark Scheme - June 2009

Question Number	Accep	table Answers	Reject	Mark
1 (a)		4, 6 any extra product scores 0. the and formula given, both must be correct tre		
	M1	NAME nitric acid (ignore dilute or concentrated)		(1)
	M2	NAME or FORMULA carbon dioxide/CO ₂ and water/H ₂ O		(1)
	M3	NAME sulphuric acid / dilute sulphuric acid, OR any soluble sulphate eg of Na, K, Li,	Conc H ₂ SO ₄ BaSO ₄ PbSO ₄	(1)
	M4 KNO ₃	NAME or FORMULA nitric acid / HNO ₃ or the corresponding nitrate eg NaNO ₃ / / Mg(NO ₃) ₂		(1)
	M5	NAME hydrogen chloride (gas)	Hydrochloric acid	(1)
	M6	NAME or FORMULA hydrogen / H ₂		

Question	Acceptable Answers	Reject	Mark
Number			
1 (b)(i)	to remove (soluble) salts / nitrates		(1)

Question	Acceptable Answers	Reject	Mark
Number			
1 (b)(ii)	M1 moles of silver = 4.32/108 = 0.04	Do not allow	(1)
		M1 = 2 and	
	M2 moles of M = 0.02 e.c.f (M2 = M1 / 2)	M2 = 1 (read	(1)
		from eq)	
	M3 Mr of M = $1.30/0.02 = 65$ (M3 = $1.30/$		(1)
	M2)		

Question	Acceptable Answers	Reject	Mark
Number			
2 (a)	M1 blue precipitate / solid		(1)
	M2 copper(II) hydroxide / Cu(OH) ₂ / copper hydroxide		(1)
	(M2 dependent on M1)		(1)
	M3 litmus turns blue		(1)
	M4 ammonia/NH3 (M4 dependent on M3)		(1)
	(If M1 and M3 not scored, allow 1 mark for		
	two correct products in M2 / M4)		

Question	Acceptable Answers	Reject	Mark
Number			
2 (b)	(incorrect reagent or use of H₂SO₄ scores zero)		
	M1 barium chloride / BaCl ₂ or barium nitrate / Ba(NO ₃) ₂		(1)
	Or barium hydroxide / Ba(OH) ₂ M2 hydrochloric acid/HCI or nitric acid/HNO ₃		(1)
			(1)
	M3 white precipitate		

Question Number	Acceptable Answers		Mark
2 (c)	(incorrect reagent or use of HCI / HBr / H₂SO₄ scores zero)		
	M1 silver nitrate / AgNO₃		(1)
	M2 nitric acid / HNO ₃		(1)
	M3 cream / off-white / <u>pale</u> yellow precipitate	Yellow	(1)
	OR		
	M1/2 pass Cl ₂ / add Cl ₂ water		(2)
	M3 orange / yellow / brown solution	Red Red-brown	(1)
		/Tatal 10	

Question Number	Acceptable Answers	Reject	Mark
3 (a)(i)	M1 $2H^+ + 2e \rightarrow H_2 / H^+ + e \rightarrow \frac{1}{2}H_2$ (ignore state		(1)
	symbols)		(1)
	M2 prescence of OH ⁻ / NaOH		(1)
	M3 basic or alkaline (solution) (due to OH / NaOH)	glowing	(1)
	M4 burns with a 'pop'/ 'pops' when lighted splint is applied	splint	

Question	Acceptable Answers		Mark
Number			
3 (a)(ii)	M1 Chlorine/Cl ₂	CI	(1)
	M2 $2CI^{-} \rightarrow CI_2 + 2e / 2CI^{-} - 2e \rightarrow CI_2$		(1)
	or $Cl^- \rightarrow \frac{1}{2}Cl_2 + e$		
	or $Cl^- \rightarrow Cl + e$ followed by $2Cl \rightarrow Cl_2$		

Question	Acceptable A	nswers	Reject	Mark
Number				
3 (b)(i)	mark	s must be given in both answers, allow 1 ct equations without / incorrect state		(1)
	Cathode	$(Cu^{2+}(aq)) + 2e \rightarrow Cu(s)$		(1)
	Anode	$(Cu(s)) \rightarrow Cu^{2+}(aq) + 2e$		

Question	Acceptable Answers	Reject	Mark
Number			
3 (b)(ii)	M1 10 moles Cu formed by 20F / 1 mole of Cu from 2F		(1)
	M2 635 g		(1)
	(M1 consequential on cathode equation in (b)(i))		

Question Number	Acc	eptable Answer	S			Reject	Mark
4 (a)(i)	M1	C = 17.83/12	H = 2.97/1	Br = 79.20/80	(divide		(1)
		by A_r))
	M2	1.486	2.97	0.99)(1)
		1.5	3	1)
		3	6	2			

Question	Acceptable Answers	Reject	Mark
Number			
4 (a)(ii)	M _r / (relative) molecular mass (= 202) / mass of 1	formula	(1)
	mole / molar mass	mass	

Question	Acceptable Answers	Reject	Mark
Number 4 (a)(iii)	M1 structure of P		
4 (a)(III)	WI Structure of F		
	н н н н-с-с-с-н OR CH ₃ .CHBr.CH ₂ Br н вг вг		(1)
	M2 $CH_3.CH = CH_2 + Br_2 \rightarrow CH_3CHBrCH_2Br$ (structure of propene required, accept Br-Br but not Br=Br. M2 dependent on M1)		(1)
	M3 addition reaction (ignore bromination /		(1)
	halogenation)		(1)
	M4 bromine is decolourised OR brown / orange / yellow to colourless		

Question	Acceptable Answers	Reject	Mark
Number			
4 (b)	Q CH ₄		(1)
	R C ₂ H ₄ CH ₂ =CH ₂ / H ₂ C=CH ₂ (double bond must be shown if structure given)		(1)
	Cracking / pyrolysis / (ignore thermal or catalytic / decomposition)		(1)

Question	Acceptable Answers	Reject	Mark
Number			
5 (a)(i)	M1 2 bond pairs correct		(1)
	M2 2 Ione pairs on oxygen (M2 dependent on M1)		(1)

Question	Acceptable Answers		Reject	Mark
Number				
5 (a)(ii)	V-shaped	(ignore any lone pairs on oxygen)		(1)

Question	Acceptable Answers	Reject	Mark
Number			
5 (a)(iii)	Break or weaken or overcome		(1)
	(weak) intermolecular forces (weak) van der Waalls forces (weak) hydrogen bonds accept little energy to separate the molecules with		
	reason (any reference to the breaking of bonds (other than hydrogen bond) scores zero)		

Question	Acceptable Answers	Reject	Mark
Number			
5 (b)	M1 cation/metal ion/positive ion		(1)
	M2 delocalised electrons /sea of electrons / electron cloud		(1)
	M3 electrons move / flow (to carry current)		(1)

Question	Acceptable Answers	Reject	Mark
Number			
5 (c)	M1 Na ⁺ and Cl ⁻ / sodium and chloride ions		(1)
	M2 when molten, ions can move (to carry current)		(1)
	M3 when solid, ions cannot move / in fixed positions / in lattice		(1)

Question Number	Acceptable Answers	Reject	Mark
6 (a)(i)	M1 cryolite / Na ₃ AIF ₆ (both must be correct if both given)		(1)
	M2 Al ³⁺ + 3e → Al		(1)
	M3 expensive to use electricity		(1)
	M4 <u>anode</u> needs to be replaced (frequently)		(1)

Question Number	Acce	ptable Answers		Reject	Mark
6 (a)(ii)		(ignite at) <u>high</u> tempera <u>burning</u> Mg ribbon	ature/use magnesium <u>fuse</u> /	heat	(1)
	M2 ($Cr_2O_3 + 2AI \rightarrow 2Cr +$	AI_2O_3		(1)
	(Al oxidised because oxygen / increases	Al loses electrons/gains oxidation state		(1)
	(Cr ³⁺ reduced because Cr reduced because Cr ₂ O ₃ reduced because			(1)
		v Al oxidised and Cr ³⁺ / no reason given	$^{\prime}$ Cr $_{2}$ O $_{3}$ reduced for 1 mark if		

Question Number	Acceptable Answers	Reject	Mark
6 (a)(iii)	M1 2PbS + $3O_2 \rightarrow 2PbO + 2SO_2$		(1)
	M2 reducing agent carbon / coke / carbon monoxide		(1)
	M3 heat or use high temperature (M3 dependent on M2)		(1)
	M4 PbO + C \rightarrow Pb + CO or 2PbO + C \rightarrow 2Pb + CO ₂ or PbO + CO \rightarrow Pb + CO ₂ M5/M6 Any two of: SO ₂ acid rain / toxic CO ₂ global warming / greenhouse gas		(1) 2x(1)
	CO poisonous / combines with haemoglobin		
	(M5/6 must relate problem to the specified pollutant)		

Question Number	Acceptable Answers	Reject	Mark
6 (b)	Any two characteristics and two examples from iron:		2x(2)
	M1 variable valency / oxidation state		max 4
	M2 Fe ²⁺ and Fe ³⁺		
	M3 coloured ions / compounds	coloured oxides	
	M4 Fe(II) green / Fe(III) yellow or brown (allow colour of specified salts but not oxides)	Oxides	
	Alternatives M1/M2 catalytic activity Fe used in Haber process		
	Or complex ions eg [Fe(H_2O) ₆] ^{2/3+} or [FeCl ₄] ^{-/2-}		

Question	Acceptable Answers	Reject	Mark
Number			
6 (c)(i)	M1 formula of FeCl ₃ as the only Fe compound		(1)
	M2 equation $2Fe + 3CI_2 \rightarrow 2FeCI_3$		(1)

Question	Acc	eptable Answers		Reject	Mark
Number					
6 (c)(ii)	M1	formula of Fe ₃ O ₄ compound	OR Fe ₂ O ₃ as the only Fe		(1) (1)
	M2	•	3Fe + $4H_2O \rightarrow Fe_3O_4 + 4H_2$ 2Fe + $3H_2O \rightarrow Fe_2O_3 + 3H_{2+}$		

Question Number	Acceptable Answers	Reject	Mark
6 (d)	Incorrect reagent scores zero. Partially correct reagent eg use alkali / OH lose M1 but allow M2/3		
	M1 (aqueous) sodium hydroxide/ammonia		(1)
	M2 iron(II) gives a green <u>precipitate</u>	green solution	(1)
	M3 iron(III) gives a brown <u>precipitate</u>	brown solution	(1)

(Total 25 Marks)

Question Number	Acceptable Answers	Reject	Mark
7 (a)(i)	M1 + = endothermic/heat absorbed		(1)
	M2 -= exothermic/heat evolved		(1)

Question Number	Acceptable Answers	Reject	Mark
7 (a)(ii)	M1 reaction 2 because exothermic		(1)
	M2 low temperature means slow reaction		(1)

Question Number	Acceptable Answers	Reject	Mark
7 (a)(iii)	Reaction 1		
	M1 decrease in <u>yield</u> (do not allow equilib goes to LHS but allow M2)		(1)
	M2 more molecules / moles / volume on right hand side of equation (or converse) (M2 dependent on M1)		(1)
	reaction 2		
	M3 no effect (on yield / equilibrium)		(1)
	M4 same number of molecules / moles / volume on each side of the equation (M4 dependent on M3)		(1)

Question Number	Acceptable Answers		Reject	Mark
7 (b)	M1	300-500 °C		(1)
	M2	150-450 atm		(1)
	M3	iron / reduced iron oxide catalyst		(1)

Question Number	Acceptable Answers	Reject	Mark
7 (c)	M1 $NH_3 + HNO_3 \rightarrow NH_4NO_3$		(1)
	$M2 M_r NH_4NO_3 = 80$		(1)
	M3 28 / 80 x 100% ecf 28 / M2 x 100		(1)
	M4 = 35% <i>(M4 dependent on use of 28 / M2 in M3)</i>		(1)
	(M2 must be dependent on the M_r of any incorrect formula of ammonium nitrate given in the equation)		

Question Number	Accep	table Answers	Reject	Mark
7 (d)(i)	M1	pipette		(1)
	M2	25 cm ³ alkali (or acid) or suitable stated volume		(1)
	M3	into conical flask		(1)
	M4	acid (or alkali) in burette		(1)
	M5	titrate until methyl orange turns orange		(1)
	M6/7	any two of: add with swirling / shake / stir dropwise <u>near</u> end-point repeat to get concordant / average of results		(1) (1)

Question Number	Accep	table Answers	Reject	Mark
7 (d)(ii)	M1	moles NaOH = $0.200 \times 0.0225 = 4.5 \times 10^{-3}$		(1)
	M2	moles $HNO_3 = 4.5 \times 10^{-3}$		(1)
	M3	concentration of $HNO_3 = 4.5 \times 10^{-3}/0.025$ = 0.18 (mol dm ⁻³⁻)		(1)
	OR			
	M1	$25 \times m_1 = 22.5 \times 0.200$		
	M2	$m_1 = (22.5 \times 0.200) / 25$		
	M3	= 0.18		

(Total 25 Marks)

Question Number	Accep	table Answers	Reject	Mark
8 (a)(i)	M1	(ethene) + steam / water		(1)
	M2	250-500°C		(1)
	M3	40-100 atm		(1)
	M4	(phosphoric) acid catalyst	other acids	(1)
	M5	$C_2H_4 + H_2O \rightarrow C_2H_5OH$ (allow $CH_2=CH_2$ and CH_3CH_2OH)	C ₂ H ₆ O	(1)

Question Number	Accep	table Answers	Reject	Mark
8 (a)(ii)	M1	aqueous glucose		(1)
	M2	yeast		(1)
	M3	25-40 °C		(1)
	M4	exclude air / oxygen		(1)
	M5	(fractionally) distil out the alcohol		(1)
	M6	$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$ (allow CH_3CH_2OH)	C ₂ H ₆ O	(1)

Question	Acceptable Answers	Reject	Mark
Number			
8 (a)(iii)	Must be positive statements re fermentation M1 advantage: uses renewable starting material	cheaper	(1)
	M2 disadvantage: slower / needs more purification / low yield / batch process		(1)

Question	Acceptable Answers	Reject	Mark
Number			
8 (b)(i)	M1 energy to break 5 C-H, C-C, C-O, O-H, 3		(1)
	0=0		
	(or 2050 + 350 + 360 + 460 + 1485)		(1)
	M2 4705 (kJmol ⁻¹ or kJ)		(1)

Question	Acceptable Answers		Reject	Mark	
Number					
8 (b)(ii)	M3 energy rel	eased forming	4 C=O + 6 O-H (or 2980 + 2760)		(1)
	M4 574	10 (kJmol ⁻¹ or kJ)			(1)

Question	Acceptable Answers	Reject	Mark
Number			
8 (b)(iii)	M5 Use of Σ bonds broken - Σ bonds formed 4705 - 5740 (M5 answer M2 - M4)		(1)
	M6 $\Delta H = -1035 \text{ (kJmol}^{-1} \text{ or kJ)}$ (dependent on M5 = M2 - M4)		(1)

Question	Acceptable Answers	Reject	Mark
Number			
8 (c)(i)	(1-)chloroethane / ethyl chloride displayed formula for CH₃CH₂Cl		(1) (1)

Question	Acceptable Answers	Reject	Mark
Number			
8 (c)(ii)	ethyl ethanoate		(1)
	displayed formula for ethyl ethanoate		(1)

Question	Acceptable Answers	Reject	Mark
Number			
8 (c)(iii)	ethene		(1)
	displayed formula for CH ₂ =CH ₂		(1)

Displayed formulae

(Total 25 Marks)

Question	Acceptable Answers	Reject	Mark
Number			
9 (a)(i)	M1 filings have a greater surface area		(1)
	M2 more (frequent) collisions		(1)
	M3 3Fe + $2O_2 \rightarrow Fe_3O_4$ (allow 4Fe + $3O_2 \rightarrow 2Fe_2O_3$)		(1)

Question	Accep	Acceptable Answers		Mark
Number				
9 (a)(ii)	M1	at r.t. molecules / particles do not have enough energy to react / do not have E _a	atoms	(1)
	M2	heat/flame gives (molecules / particles) energy		(1)
	M3	more molecules / particles have E_a / more successful / effective collisions		(1)
	M4	$2H_2 + O_2 \rightarrow 2H_2O$		(1)

Question	Acceptable Answers	Reject	Mark
Number			
9 (b)(i)	M1 7 / same number of electrons <u>in outer / valence shell</u>		(1)
	M2 atoms become larger as group descended		(1)
	M3 less attraction for (extra) electron / harder to gain an electron		(1)

Question	Acceptable Answers	Reject	Mark
Number			
9 (b)(ii)	red-brown / orange-brown / dark brown / brown solution or black / grey black precipitate / solid		(1)
	M2 <u>IONIC</u> equation $CI_2 + 2I^- \rightarrow 2CI^- + I_2$		(1)

Question	Acceptable Answers	Reject	Mark
Number			
9 (b)(iii)	any one of: colour darkens / green → brown → black		(1)
	or m.pt. (or b.pt.) increases / gas → liquid → solid or solubility decreases or density increases		

Question Number	Acceptable	e Answers	Reject	Mark
9 (b)(iv)		nganese(IV) oxide / manganese dioxide / MnO ₂ cassium permanganate / potassium e(VII) / KMnO ₄		(1)
	M2 to r	remove HCI		(1)
		ncentrated sulphuric acid / anhydrous calcium oride / silica gel	CaO	(1)
		wnward delivery / upward displacement of air / inge		(1)

Question	Acceptable Answers	Reject	Mark
Number			
9 (c)	M1 MgO formed		(1)
	M2 Mg + $H_2O \rightarrow MgO + H_2$		(1)
	M3 Ca(OH) ₂ formed		(1)
	M4 Ca + $2H_2O \rightarrow Ca(OH)_2 + H_2$		(1)
	M5 any two of: M6 calcium sinks bubbles (of gas) / effervescence cloudy / white suspension / solid /deposit	milky chalky ppte	(1) (1)
	M7 Li/Na/K/Rb/Cs or Sr/Ba <i>(can be scored in equation)</i>		(1)
	M8 $2M + 2H_2O \rightarrow 2MOH + H_2$ (group I) $M + 2H_2O \rightarrow M(OH)_2 + H_2$ (Sr / Ba)		(1)

(Total 25 Marks)

PAPER TOTAL 100 MARKS

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email <u>publications@linneydirect.com</u>

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH