

Mark Scheme January 2009

GCE

GCE O Chemistry (7081)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2009 All the material in this publication is copyright © Edexcel Ltd 2009

Contents

1.	Paper 1 Mark Scheme	6
2.	Paper 2 Mark Scheme	14

7081/01 Chemistry Paper 1

Question Number	Acceptable Answers	Reject	Mark
1	Br ⁻ CaBr ₂ aluminium sulphate Al ₂ (SO ₄) ₃ iron(II) nitrate / ferrous nitrate Fe ²⁺ Cr ³⁺ Cr(OH) ₃	BR ⁻ , CA ²⁺ etc	(1) (1) (1) (1) (1) (1) (1) (1)

(Total 8 Marks)

Question Number	Acceptable Answers	Reject	Mark
2 (a)	2,8,8,2		(1)

Question Number	Acceptable Answers	Reject	Mark
2 (b)	2,8,8		(1)

Question Number	Acceptable Answers	Reject	Mark
2 (c)	35		(1)

Question Number	Acceptable Answers	Reject	Mark
2 (d)	7		(1)

Question Number	Acceptable Answers	Reject	Mark
2 (e)	5		(1)

Question Number	Acceptable Answers	Reject	Mark
2 (f)	5		(1)

(Total 6 Marks)

Question Number	Acceptable Answers	Reject	Mark
3 (a)	white		(1)
Questien		Deitect	Marili

Question	Acceptable Answers	Reject	Mark
Number			
3 (b)	blue		(1)

Question Number	Acceptable Answers	Reject	Mark
3 (c)	purple or violet		(1)

Question	Acceptable Answers	Reject	Mark
Number			
3 (d)	black		(1)

Question Number	Acceptable Answers	Reject	Mark
3 (e)	white		(1)

Question Number	Acceptable Answers	Reject	Mark
3 (f)	dark blue or deep blue		(1)

(Total 6 Marks)

Question Number	Acceptable Answers	Reject	Mark
4 (a)	He / Ne / Ar / Kr / Xe / Rn or full names		(1)

Question Number	Acceptable Answers	Reject	Mark
4 (b)	hydrochloric / sulphuric / nitric acid or HCl / H2SO4 / HNO3	hydrogen chloride	(1)

Question Number	Acceptable Answers	Reject	Mark
4 (c)	carbon monoxide / CO		(1)

Question Number	Acceptable Answers	Reject	Mark
4 (d)	chlorine / Cl ₂		(1)

Question Number	Acceptable Answers	Reject	Mark
4 (e)	copper(II) oxide / CuO		(1)

Question Number	Acceptable Answers	Reject	Mark
4 (f)	methane / CH_4		(1)

Question Number	Acceptable Answers	Reject	Mark
5 (a)	moles of P = 22.5/31 (= 0.726) and moles of Cl = 77.5/35.5 (= 2.18)		(1)
	P:Cl = 1:3 hence PCl ₃		(1) (1)

Question Number	Acceptable Answers	Reject	Mark
5 (b)	pairs of electrons in covalent bonds correctly shown		(1)
	other electrons correct (mark dependent on first being awarded)		(1)

Question Number	Acceptable Answers	Reject	Mark
5 (c)	Any two : chloroethane / ethyl chloride or C₂H₅Cl hydrogen chloride or HCl		(1)
	phosphorus oxychloride or POCl ₃		(1)

(Total 7 Marks)

Question Number	Acceptable Answers	Reject	Mark
6 (a)(i)	X proton		(1)
	Y neutron		(1)
	Z electron		(1)

Question Number	Acceptable Answers	Reject	Mark
6 (a)(ii)	proton and neutron or X and Y		(1)

Question Number	Acceptable Answers	Reject	Mark
6 (a)(iii)	atomic no. = 3 mass no. = 7		(1) (1)

Question Number	Acceptable Answers	Reject	Mark
6 (b)(i)	3 protons + 3 neutrons / 3X and 3Y		(1)

Question Number	Acceptable Answers	Reject	Mark
6 (b)(ii)	same number of electrons (in outer shell)/ same electron configuration / same electron arrangement		(1)

(Total 8 Marks)

Question Number	Acceptable Answers	Reject	Mark
7 (a)	condensation / liquefaction		(1)

Question Number	Acceptable Answers	Reject	Mark
7 (b)	in steam, particles are far apart; and move freely/randomly / long distances before collision;		(1) (1)
	in water, particles are close together; and can only move short distances before collision / slide past each other;		(1) (1)

Question Number	Acceptable Answers	Reject	Mark
7 (c)	water to steam: particles have to be completely separated/intermolecular forces have to be completely overcome.		(1)
	ice to water: particles need to be loosened / intermolecular forces partially overcome		(1)

(Total 7 Marks)

Question Number	Acceptable Answers	Reject	Mark
8 (a)(i)	explodes/violent reaction / ignites any ONE		(1)
	floats/moves on surface / fizzes / melts any ONE		(1)

Question Number	Acceptable Answers	Reject	Mark
8 (a)(ii)	$2Rb + 2H_2O \rightarrow 2RbOH + H_2$ formulae balance		(1) (1)

Question Number	Acceptable Answers	Reject	Mark
8 (b)	2RbNO3 → 2RbNO2 + O2 formulae balance		(1) (1)

(Total 6 Marks)

Question Number	Acceptable Answers	Reject	Mark
9 (a)(i)	experiment A		(1)

Question Number	Acceptable Answers	Reject	Mark
9 (a)(ii)	boiled to remove dissolved air covered in oil to exclude air		(1) (1)

Question Number	Acceptable Answers	Reject	Mark
9 (a)(iii)	to dry the air / remove water vapour / remove moisture		(1)

Question Number	Acceptable Answers	Reject	Mark
9 (a)(iv)	both air and water are required for rusting		(1)

Question Number	Acceptable Answers	Reject	Mark
9 (b)(i)	zinc is above iron in reactivity series / more reactive corrodes/reacts in preference to iron or acts as sacrificial metal		(1) (1)

Question Number	Acceptable Answers	Reject	Mark
9 (b)(ii)	magnesium		(1)

(Total 8 Marks)

Question Number	Acceptable Answers	Reject	Mark
10 (a)(i)	yeast		(1)

Question Number	Acceptable Answers	Reject	Mark
10(a)(ii)	25—40 °C (any value within this range)		(1)

Question Number	Acceptable Answers	Reject	Mark
10(a)(iii)	exclude air / oxygen		(1)

Question Number	Acceptable Answers	Reject	Mark
10(a)(iv)	filter/decant		(1)

Question Number	Acceptable Answers	Reject	Mark
10(a)(v)	fractional distillation		(1)

Question Number	Acceptable Answers	Reject	Mark
10(a)(vi)	$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$ formulae balance		(1) (1)

Question Number	Acceptable Answers	Reject	Mark
10(b)	advantage: renewable starting material / lower	answers	(1)
	temperature required	based on	
	disadvantage: slow / product requires purification	cost	(1)

(Total 9 Marks)

Question	Acceptable Answers	Reject	Mark
Number			
11 (a)	structure showing the ester linkage (bonding must be shown in the -COO- section)		(1)
	methyl ethanoate		(1)

Question Number	Acceptable Answers	Reject	Mark
11 (b)(i)	-COOCH ₂ CH ₂ -		(1)

Question Number	Acceptable Answers	Reject	Mark
11(b)(ii)	condensation nylon/ polyamide/terylene		(1) (1)

Question Number	Acceptable Answers	Reject	Mark
12 (a)	3,2		(1)

Question Number	Acceptable Answers	Reject	Mark
12 (b)	5,4,6		(1)

Question Number	Acceptable Answers	Reject	Mark
12 (c)	2,2		(1)

Question Number	Acceptable Answers	Reject	Mark
12 (d)	4,2		(1)

(Total 4 Marks)

Question Number	Acceptable Answers	Reject	Mark
13 (a)	Experiment 1, increase Experiment 2, decrease		(1)

Question Number	Acceptable Answers	Reject	Mark
13 (b)	Experiment 1, addition of oxygen / copper reacts with oxygen / oxide layer forms		(1)
	Experiment 2, loss of CO ₂		(1)

Question Number	Acceptable Answers	Reject	Mark
13 (c)	Experiment 1, oxidation Experiment 2, (thermal) decomposition		(1) (1)

Question Number	Acceptable Answers	Reject	Mark
13(d)	Experiment 1, 2Cu + $O_2 \rightarrow 2CuO$ Experiment 2, CuCO ₃ \rightarrow CuO + CO ₂		(1) (1)

(Total 8 Marks)

Question Number	Acceptable Answers	Reject	Mark
14 (a)	acid: burette alkali: pipette		(1) (1)

Question Number	Acceptable Answers	Reject	Mark
14(b)	methyl orange / phenolphthalein		(1)
	orange / colourless		(1)

-	Acceptable Answers	Reject	Mark
Number			
14(c)	to ensure accuracy / check results		(1)

Question Number	Acceptable Answers	Reject	Mark
14 (d)	28.80, 27.95, 28.05		(2)

Question Number	Acceptable Answers	Reject	Mark
14(e)	ignore 28.80 mean = 28.00		(1) (1)

Question Number	Acceptable Answers	Reject	Mark
14(f)	moles HCl = 0.200 x 0.028		(1)
	= 0.0056		
	concentration NaOH = 0.0056/0.025		(2)
	= 0.224 (mol dm ⁻³)		

(Total 12 Marks)

PAPER TOTAL 100 MARKS

7081/02 Chemistry Paper 2

SECTION A

Question Number	Acceptable Answers	Reject	Mark
1 (a)	Accept name or formula		
	Zn / Mg / Fe <u>AND</u> dil H2SO4 / H2SO4 / dil HCl / conc HCl / HCl	Conc H₂SO₄	(1)
	conc. H_2SO_4 / anhydrous CaCl ₂ / silica gel / CaO / soda lime / P_2O_5		(1)
	upward delivery / downward displacement <u>of air</u> / syringe		(1)

Question Number	Acceptable Answers	Reject	Mark
1 (b)(i)	$2H_2 + O_2 \rightarrow 2H_2O$ / $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$		(1)
	(ignore state symbols)		

Question Number	Acceptable Answers	Reject	Mark
1 (b)(ii)	add to anhydrous / white CuSO ₄ / <u>OR</u> anhydrous / blue CoCl ₂ OR CoCl ₂ paper		(1)
	(CuSO ₄) turns blue $/$ (CoCl ₂) turns pink		(1)

Question Number	Acceptable A	nswers	Reject	Mark
1 (b)(iii)	find b.pt.	/ m.pt.		(1)
	100 ºC	′ 0 °C		(1)

Question Number	Acceptable Answers	Reject	Mark
1 (c)	$H_2 + Cl_2 \rightarrow 2HCl / \frac{1}{2}H_2 + \frac{1}{2}Cl_2 \rightarrow HCl$		(1)
	hydrogen chloride	hydrochloric acid	(1)

Question Number	Acceptable A	nswers gent / no reagent scores 0/3	Reject	Mark
2 (a)	add barium c	hloride / BaCl ₂ (and HCl)		(1)
	NaCl:	no precipitate / no reaction / no observation / no change		(1)
	Na_2SO_4 :	white precipitate		(1)

Acceptable Answers	Reject	Mark
add sodium hydroxide / NaOH		(1)
FeCl ₂ : green ppt.	Green solution	(1)
FeCl ₃ : brown ppt.	Brown solution	(1)
	add sodium hydroxide / NaOH FeCl ₂ : green ppt.	add sodium hydroxide / NaOHGreen solutionFeCl2: green ppt.Green solution

Question Number	Acceptable Answers	Reject	Mark
2 (c)	heat and pass gas through lime water / $Ca(OH)_2$		(1)
	Na_2CO_3 : no ppt. / no reaction / does not decompose		(1)
	MgCO ₃ : turns milky / white ppt.		(1)
	Lime water mark could be scored in M3, (gas turns LW milky)		

Question Number	Acceptable Answers	Reject	Mark
2 (d)	$Na_2SO_4 + BaCl_2 \rightarrow BaSO_4 + 2NaCl / SO_4^{2-} + Ba^{2+} \rightarrow BaSO_4$		(1)
	$FeCl_2 + 2NaOH \rightarrow Fe(OH)_2 + 2NaCl / Fe^{2+} + 2OH^- \rightarrow Fe(OH)_2$		
	$FeCl_3$ + $3NaOH \rightarrow Fe(OH)_3$ + $2NaCl / Fe^{3+}$ + $3OH^- \rightarrow Fe(OH)_3$	OH) ₃	
	$MgCO_3 \rightarrow MgO + CO_2$		
	CO_2 + $Ca(OH)_2 \rightarrow CaCO_3$ + H_2O		

Question Number	Acceptable Answers		Reject	Mark
3 (a)(i)	fraction 1 name use fraction 2 name LPG Petrol / gasoline Naphtha Kerosene / paraffin Gas oil / diesel Mineral / lubricating Fuel oil Wax / grease Bitumen	calor gas / camping gas / fuel motor fuel petrochemicals / cracking aircraft fuel / petrochemicals central heating fuel / motor fuel / Petrochemicals oil lubrication / petrochemicals fuel for ships / fuel for power stations candles / grease / polish roofing / road surfacing		(1) (1) (1)

Question Number	Acceptable Answers	Reject	Mark
3 (a)(ii)	(thermal / catalytic) cracking		(1)
	provides high value / more useful products demand for short chain molecules / petrol / alkenes > supply need more short chain molecules / petrol / alkenes		(1)

Question Number	Acceptable Answers	Reject	Mark
3 (a)(iii)	Minimum requirement $-CH_2-CH_2-$		(1)
	(accept any number of – CH_2 –units but must have bond at each end)		

Question Number	Acceptable Answers	Reject	Mark
3 (b)(i)	structural / displayed formula for isomer 1 structural / displayed formula for isomer 2 <i>(if 3 structures given all 3 must be different to score (2)</i>		(1) (1)
	one correct name (if 2 names given both must be correct) CH ₃ CH ₃ CH ₂ CHCH ₃		(1)
	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CCH ₃ CH ₃		
	pentane CH3 (2-)methylbutane (2,2-)dimethylpropane		

Question	Acceptable Answers	Reject	Mark
Number			
3 (b)(ii)	structural / displayed formula (must show double bond)		(1)
	$CH_3 CH_2 CH = CH_2 CH_3 CH = CH CH_3 CH_3 CH_3 CH_2 CH_2$		
	(as bi for > 1 formula ignore names) CH ₃		

Question Number	Acceptable Answers		Reject	Mark
4 (a)	red-brown / brown solution OR black precipitate / solid			(1)
	(name) iodine			(1)
	(name) sodium chloride	(any extra product >2 loses mark)		(1)
	Cl₂ +2NaI → 2NaCl + I₂			(1)

Question Number	Acceptable Answers			Mark
4 (b)	black solid/crystals OR black (or b	black solid/crystals OR black (or brown) fumes formed		(1)
	(<i>name)</i> iron(III) / ferric chloride	(any extra product loses mark)		(1)
	$2Fe + 3Cl_2 \rightarrow 2FeCl_3$			(1)

Question Number	Acceptable Answers	Reject	Mark
4 (c)	cream / off-white / <u>pale</u> yellow precipitate		(1)
	(name) silver bromide (any extra product loses mark)		(1)
	$AgNO_3$ + $NaBr \rightarrow AgBr$ + $NaNO_3$		(1)

Question Number	Accep	cceptable Answers		Reject	Mark	
5 (a)(i)	M1	0.05 x 4.2 x	0.05 x 4.2 x 24			(1)
	M2	5.04 kJ	(accept 5040 <u>J</u>)			(1)
			(M2 dependent on M1)			

Question Number	Accep	table Answers	Reject	Mark
5 (a)(ii)	M3	moles CuSO ₄ = (0.5 x 0.05) = 0.025		(1)
	M4	enthalpy change = 5.04/0.025		(1)
	M5	= 201.6 or 202 kJ (mol ⁻¹)		(1)
	(M4	ecf M2 / M3)		
	(M5	dependent on M4, (accept 201600 <u>J(</u> mol ⁻¹))		

Question	Acceptable Answers	Reject	Mark
Number			(
5 (a)(iii)	M6 –202 (or –201.6) (negative sign essential)		(1)
	(M6 must be negative answer to M5 in kJ)		

Question Number	Accep	table Answers	Reject	Mark
5 (b)(i)		$Fe(s) + Cu^{2+}(aq) \rightarrow Fe^{2+}(aq) + Cu(s)$		
	M7	formulae + balance		(1)
	M8	state symbols (M8 dependent on M7)		(1)

Question Number	Acceptable Answers	Reject	Mark
5 (b)(ii)	M9 <u>Fe</u> loses electrons therefore oxidised		(1)
	M10 $\underline{Cu^{2+}}$ gains electrons therefore reduced		(1)
	or		
	M9 <u>Fe</u> loses electrons, \underline{Cu}^{2+} gains electrons		
	M10 <u>Fe</u> oxidised, \underline{Cu}^{2+} reduced		
	(must be answered in terms of <u>electron transfer</u>)		

SECTION B

Question Number	Accep	table Answers	Reject	Mark
6 (a)(i)	M1	O_2 and N_2 have different b.pts. / boil off at different temperatures		(1)
	M2	fractional distillation		(1)
	M3	liquid air		(1)
	M4	N_2 boils off before $O_2/\ N_2$ has lower b.pt.		(1)
	(М4 со	ould score both M1 and M4)		

Question Number	Acceptable Answers	Reject	Mark
6 (a)(ii)	M1 spill <u>burns brighter</u> / <u>continues to burn</u> in O ₂		(1)
	M2 spill is <u>extinguished</u> in N ₂		(1)
	(do not accept answers in terms of a glowing splint / lighted splint rekindles in O_2 / no effect with N_2)		

Question Number	Acceptable Ar	nswers	Reject	Mark
6 (a)(iii)	Names of any	v two gases + uses		(1x2)
	Helium neon argon krypton xenon	balloons, air/helium mixture for diving, inert atmosphere for welding advertising signs, lights etc inert atmosphere for welding extraction of metals preserving food electric lamps, discharge tubes, lasers etc arc lamps, lasers		

Question Number	Accep	table Answe		Reject	Mark	
6 (a)(iv)	M1	11 <i>(name)</i> carbon dioxide				(1)
	M2/M3	$W2/M3 \qquad CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$				
	M2	formulae	(1)			(1)
	M3	balance	(1)	(M3 dependent on M2)		(1)
				-		

Question Number	Accep	otable Answers	Reject	Mark
6 (b)(i)	M1	correct arrangement for triple bond		(1)
	M2	1 lone pair on each N atom		(1)
		(M2 dependent on M1)		
	M3	triple bond strong / hard to break		(1)

Question Number	Accep	otable Answers	Reject	Mark
6 (b)(ii)	M1	300 -550°C		(1)
	M2	150 - 400 atm		(1)
	M3	<i>(name)</i> <u>iron</u> catalyst		(1)
	M4	low temperature because exothermic reaction		(1)
	M5	high pressure because less mol(e)s/volume on right		(1)
	M6	low temperature means slow rate		(1)
	M7	use higher/compromise temperature (to increase rate)		(1)
	M8	add catalyst to increase rate		(1)

Question Number	Accep	otable A	Answers	Reject	Mark	
6 (b)(iii)	M1	mole	s NH₄Cl = 0.535/53.5 mol = 0.01 mol		(1)	
	M2	mole	$s NH_3$ formed = 0.01		(1)	
	M3	volun	volume NH ₃ = 0.01 x 24 or 24000 = 0.24 dm^3 / 240 cm^3			
	(ecf f	rom M				
	(ecf f	rom M2				
	(acc	ept any	y correct method for 3 marks)			
	eg	M1	53.5g NH ₄ Cl gives 24 dm ³ of NH ₃			
		M2	0.533g gives (0.533 x 24) / 53.5 (ecf from M _r)			
		M3	= 0.24 dm ³ / 240 cm ³ (ecf from M2)			

Question Number	Acceptable	Acceptable Answers			Mark
7 (a)(i)	M1 allot	ropy	an <u>elemen</u> t can exist in two (or more) forms in the <u>same physical state</u>	substance molecule compound atom	(1)
	M2 / M3 rhombic / α Monoclinic / β				(1) (1)

Question Number	Ассер	table Answers	Reject	Mark
7 (a)(ii)	M1	A and B		(1)
	M2	addition of oxygen / increase in oxidation state of S		(1)

Question Number	Ассер	table Answers	Reject	Mark
7 (a)(iii)	M1	$2SO_2 + O_2 \neq 2SO_3$ (accept single arrow)		(1)
	M2	300 to 500°C		(1)
	M3	1 to 3 atms		(1)
	M4	V ₂ O ₅ / vanadium(V) oxide catalyst (<i>M4 penalise any other oxidation state of V for</i>)		(1)

Question Number	Accep	table Answers	Reject	Mark
7 (a)(iv)	M1 M2	add SO3 to conc/98% sulphuric acid add / dilute with water		(1) (1)
	M3	gets too hot / mist of acid droplets / exothermic reaction / dangerous with qualification		(1)

Question Number	Acceptable Answers	Reject	Mark
7 (b)(i)	Incorrect reagent scores zero. Incomplete reagent eg dichromate lose M1 but allow M2		
	M1 (acidified) potassium dichromate / (VI) / $K_2Cr_2O_7$ OR (acidified) potassium manganate / (VII) / KMnO ₄ potassium permanganate		(1)
	M2 colour change (from orange) to green OR (purple) to colourless		(1)
	(M1 penalise any other oxidation state of Mn or Cr but allow M2)		

Question Number	Acceptable Answers	Reject	Mark
7 (b)(ii)	$2NaOH + SO_2 \rightarrow Na_2SO_3 + H_2O$		
	M1 formulae		(1)
	M2 balance (M2 dependent on M1)		(1)
	M3 (name) sodium sulphite / sulphate(IV)		(1)
	(mark M3 independent of M1/M2, ignore other products in equation)		

Question Number	Accep	otable Answers	Reject	Mark
7 (c)(i)	M1	heat / 150 to 200°C / use hot conditions		(1)
	M2	$C_2H_5OH \ \rightarrow \ C_2H_4 \ + \ H_2O$		(1)
	M3	role of H_2SO_4 : dehydrating agent / removes water		(1)
(ii)	(M2	allow CH ₃ CH ₂ OH and CH ₂ =CH ₂ / CH ₂ CH ₂)	C ₂ H ₆ O	
	M4	warm / heat (60 to 100°C)		(1)
	M5	$CH_3COOH \ + \ C_2H_5OH \ \rightarrow \ CH_3COOC_2H_5 \ + \ H_2O$		(1)
	M6	role of H_2SO_4 : catalyst / to increase rate		(1)
	M7	structure (M7 could be scored in the equation) o ll CH3.C – OCH2CH3 allow C2H5		(1)
	M8	ethyl ethanoate (Mark M8/M7 independently)		(1)

Question Number	Acceptable Answers	Rejea	t Mark
8 (a)(i)	M1 sodium has delocalised	electrons (in solid and liquid)	(1)
	M2 electrons <u>move</u> (to carr	y the current)	(1)
	M3 NaCl has ions / is an ion	ic compound	(1)
	M4 ions fixed in solid / can	not move / only vibrate	(1)
	M5 ions can <u>move</u> in liquid	state	(1)

Question Number	Accep	otable Answers	Reject	Mark
8 (a)(ii)	M1	covalent compounds consist of molecules		(1)
	M2	weak attractive forces between molecules / intermolecular forces / Van der Waals forces		(1)
	M3	ionic compounds consist of positive and negative ions / oppositely charged ions		(1)
	M4	strong attraction between ions		(1)
	M5	hence covalent particles / molecules further apart than solid particles / ions in solid state		(1)

Question Number	Acceptable Answers	Reject	Mark
8 (a)(iii)	M1 gas is hydrogen / H_2 (accept H_2 in equation)		(1)
	M2 HCl in water is acidic / forms hydrochloric acid / forms ions / is ionic		(1)
	M3 $H^{+}(aq)$ ions present in water (gives acidic properties)		(1)
	M4 HCl in methylbenzene consists of molecules / remains covalent		(1)

Question Number	Acceptable Answers	Reject	Mark
8 (a)(iv)	M1 powder reacts faster		(1)
	M2 powder has a larger surface area		(1)
	M3 so more (frequent) collisions (between acid and solid)		(1)
	(M2/M3 dependent on M1)		

Question Number	Acceptable Answers	Reject	Mark
	<i>Q8b(i) and (ii) require descriptions of experiments and a statement of the observation made.</i>		
8 (b)(i)	M1 t.t / flask with H_2O_2 only		(1)
	M2 t.t / flask with H_2O_2 and MnO_2 / catalyst		(1)
	M3 gas evolved / effervescence with catalyst OR gas evolved with catalyst only		(1)
	For M1/M2: apparatus must be mentioned M3: observation mark can be scored independently		

Question Number	Accep	otable Answers	Reject	Mark
8 (b)(ii)	M1	weigh sample of catalyst		(1)
	M2	add to H_2O_2 and allow reaction to go to completion		(1)
	M3	filter off catalyst		(1)
	M4	dry catalyst		(1)
	M5	reweigh to see if mass is the same		(1)

Question Number	Accep	otable A	Answers	Reject	Mark
9 (a)(i)	M1	moles	$s CuFeS_2 = 367000 / 183.5 = 2000 (accept 2)$		(1)
	M2	moles	s Cu = 2000 <i>(accept 2)</i>		(1)
	M3	mass	Cu = 63.5 x 2 or 2000 g = 127 <u>kg</u> / 127000 <u>g</u>		(1)
	(M2 (M3		rom M1, M2 = M1 answer) rom M2, answer 63.5 x M2, insist on units)		
	OR	M1	734 kg/g CuFeS ₂ gives 254 kg/g Cu		
		M2	367 kg/g CuFeS ₂ gives (367 254 / 734) kg/g		
		M3	= 127kg / 127000g		

Question Number	Acceptable Answers	Reject	Mark
9 (a)(ii)	SO_2 and water form acid rain / SO_2 is a source of acid rain		(1)
	(ignore reference to global warming / ozone layer)		

Question Number	Acceptable Answers	Reject	Mark
9 (b)(i)	M1electrolyte : name (aqueous) copper sulphate (solution)M2pure copper cathodeM3impure copper anodeM4cathode; $Cu^{2+} + 2e \rightarrow Cu$ M5anode: $Cu \rightarrow Cu^{2+} + 2e$ M6any one observation brown deposit on cathode / blue solution remains / cathode increase in size or mass 		 (1) (1) (1) (1) (1)

Question Number	Acceptable Answers		Reject	Mark
9 (b)(ii)	M1 M2	reduction at cathode (Cu ²⁺) gains electrons / oxidation state of Cu decreases (from +2 to 0)		(1) (1)
	(M1 n	nust be in agreement with the answer in part b(i))		

Question Number	Acceptable Answers		Reject	Mark
9 (b)(iii)	M1	2 faradays give 63.5 g copper		(1)
	M2	200 f gives 6350 g		(1)

Question Number	Acceptable Answers	Reject	Mark
Number 9 (c)	Any 2 chemical characteristics $2x(1)$ with examples from <u>Cu</u> chemistry $2 x (1)$ variable valency / oxidation state e.g. Cu(I) and Cu(II) or formulae / name of compounds coloured salts/ions e.g. blue CuSO ₄ / blue solutions of CuSO ₄ or Cu(NO ₃) ₂ (ignore reference to CuO) forms complexes e.g. [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ / tetraamminediaquacopper(II) (do not accept [Cu(NH ₃) ₄ 2H ₂ O] ²⁺) catalyst e.g. dehydrogenation of alcohol		1+1 1+1
	(accept CuSO ₄ in preparation of H_2 from Zn and acid)		

Question Number	Acceptable Answers		Reject	Mark
9 (d)(i)	M2/M3	The cipitate $CuSO_4 + 2NaOH \rightarrow Cu(OH)_2 + Na_2SO_4$ $Or Cu^{2+} + 2OH^- \rightarrow Cu(OH)_2$		(1)
		nulae correct e <i>(M3 dependent on M2)</i>		(1) (1)

Question Number	Acceptable Answers			Mark
9 (d)(ii)	M1	black solid/residue OR turns black		(1)
	M2	(red / yellow / orange) / brown gas (M1/M2ignore other observations such as melting, steam evolved etc,)		(1)
		$2Cu(NO_3)_2 \rightarrow 2CuO + 4NO_2 + O_2$		
	M3 M4	all formulae correct balance <i>(M4 dependent on M3)</i>		(1) (1)

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> January 2009

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: 190 High Holborn, London WC1V 7BH