

Mark Scheme (Results) January 2009

GCE

GCE O level Chemistry 7081/02

SECTION A

Question Number	Acceptable Answers	Reject	Mark
1 (a)	Accept name or formula		
	Zn / Mg / Fe <u>AND</u> dil H ₂ SO ₄ / H ₂ SO ₄ / dil HCl / conc HCl / HCl	Conc H ₂ SO ₄	(1)
	conc. H_2SO_4 / anhydrous $CaCl_2$ / silica gel / CaO / soda lime / P_2O_5		(1)
	upward delivery / downward displacement <u>of air</u> / syringe		(1)

Question Number	Acceptable Answers	Reject	Mark
1 (b)(i)	$2H_2 + O_2 \rightarrow 2H_2O$ / $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$		(1)
	(ignore state symbols)		

Question	Acceptable Answers	Reject	Mark
Number			
1 (b)(ii)	add to anhydrous / white CuSO ₄ /		
	OR anhydrous / blue CoCl ₂ OR CoCl ₂ paper		(1)
	(CuSO ₄) turns blue / (CoCl ₂) turns pink		(1)

Question Number	Acceptable Answers	Reject	Mark
1 (b)(iii)	find b.pt. / m.pt.		(1)
	100 °C / 0 °C		(1)

Question Number	Acceptable Answers	Reject	Mark
1 (c)	$H_2 + Cl_2 \rightarrow 2HCl / \frac{1}{2}H_2 + \frac{1}{2}Cl_2 \rightarrow HCl$		(1)
	hydrogen chloride	hydrochloric acid	(1)

Question Number	Acceptable A	nswers	Reject	Mark
	Incorrect rea	gent / no reagent scores 0/3		
2 (a)	add barium c	hloride / BaCl ₂ (and HCl)		(1)
	NaCl:	no precipitate / no reaction / no observation / no change		(1)
	Na₂SO₄:	white precipitate		(1)

Question Number	Acceptable Answers	Reject	Mark
2 (b)	add sodium hydroxide / NaOH		(1)
	FeCl ₂ : green ppt.	Green solution	(1)
	FeCl ₃ : brown ppt.	Brown solution	(1)

Question Number	Acceptable Answers	Reject	Mark
	host and pass gas through lime water / Ca(OU)		(1)
2 (c)	heat and pass gas through lime water / Ca(OH) ₂		(1)
	Na ₂ CO ₃ : no ppt. / no reaction / does not decompose		(1)
	MgCO₃: turns milky / white ppt.		(1)
	Lime water mark could be scored in M3, (gas turns LW milky)		

Question Number	Acceptable Answers	Reject	Mark
2 (d)	$Na_2SO_4 + BaCl_2 \rightarrow BaSO_4 + 2NaCl / SO_4^{2-} + Ba^{2+} \rightarrow BaSO_4$	1	(1)
	$FeCl_2 + 2NaOH \rightarrow Fe(OH)_2 + 2NaCl / Fe^{2+} + 2OH^- \rightarrow Fe(OH)_2 + 2NaCl / Fe^{2+} + $	OH) ₂	
	$FeCl_3 + 3NaOH \rightarrow Fe(OH)_3 + 2NaCl / Fe^{3+} + 3OH^- \rightarrow Fe(OH)_3 + 2NaCl / Fe^{3+} + 2Na$	OH) ₃	
	$MgCO_3 \rightarrow MgO + CO_2$		
	$CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$		

Question Number	Acceptable Answers		Reject	Mark
3 (a)(i)	fraction 1 name use fraction 2 name LPG Petrol / gasoline Naphtha Kerosene / paraffin Gas oil / diesel Mineral / lubricating Fuel oil Wax / grease Bitumen	calor gas / camping gas / fuel motor fuel petrochemicals / cracking aircraft fuel / petrochemicals central heating fuel / motor fuel / Petrochemicals oil lubrication / petrochemicals fuel for ships / fuel for power stations candles / grease / polish roofing / road surfacing		(1) (1) (1)

Question	Acceptable Answers	Reject	Mark
Number			
3 (a)(ii)	(thermal / catalytic) cracking		(1)
	provides high value / more useful products demand for short chain molecules / petrol / alkenes > supply need more short chain molecules / petrol / alkenes		(1)

Question	Acceptable Answers	Reject	Mark
Number			
3 (a)(iii)	Minimum requirement —CH ₂ —CH ₂ —		(1)
	(accept any number of − CH ₂ −units but must have bond at		
	each end)		

Question	Acceptable Answers		Reject	Mark
Number				
3 (b)(i)	structural / displayed formula for is	omer 1		(1)
	structural / displayed formula for is	omer 2		(1)
	(if 3 structures given all 3 must be	different to score (2)		
	one correct name (if 2 names given	both must be correct)		(1)
		СН₃		
	CH ₃ CH ₂ CHCH ₃			
	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	CH ₃ CCH ₃		
	CH ₃			
	pentane	CH ₃		
	(2-)methylbutane	(2,2-)dimethylpropane		

_	Acceptable Answers	Reject	Mark
Number			
3 (b)(ii)	structural / displayed formula (must show double bond)		(1)
	CH_3 CH_2 CH = CH_2 CH_3 CH = CH CH_3 CH_3 CH_3 CH_2		
	(as bi for > 1 formula ignore names) CH ₃		

Question Number	Acceptable Answers		Reject	Mark
4 (a)	red-brown / brown solution	OR black precipitate / solid		(1)
	(name) iodine			(1)
	(name) sodium chloride	(any extra product >2 loses mark)		(1)
	$Cl_2 + 2NaI \rightarrow 2NaCl + I_2$			(1)

Question	Acceptable Answers		Reject	Mark
Number				
4 (b)	black solid/crystals OR black (or b	rown) fumes formed		(1)
	(name) iron(III) / ferric chloride	(any extra product loses mark)		(1)
	2Fe + 3Cl₂ → 2FeCl₃			(1)

Question Number	Acceptable Answers	Reject	Mark
4 (c)	cream / off-white / <u>pale</u> yellow precipitate	yellow	(1)
	(name) silver bromide (any extra product loses mark)		(1)
	AgNO ₃ + NaBr → AgBr + NaNO ₃		(1)
	AgNO ₃ + NaBr → AgBr + NaNO ₃		

Question Number	Acce	ptable Answe	rs	Reject	Mark
5 (a)(i)	M1	0.05 x 4.2	x 24		(1)
	M2	5.04 kJ	(accept 5040 <u>J</u>)		(1)
			(M2 dependent on M1)		

Question Number	Accep	table Answers	Reject	Mark
5 (a)(ii)	M3	moles $CuSO_4 = (0.5 \times 0.05) = 0.025$		(1)
	M4	enthalpy change = 5.04/0.025		(1)
	M5	= 201.6 or 202 kJ (mol ⁻¹)		(1)
	(M4	ecf M2/M3)		
	(M5	dependent on M4, (accept 201600 <u>J</u> (mol ⁻¹))		

Question	Acceptable Answers	Reject	Mark
Number			
5 (a)(iii)	M6 —202 (or —201.6) (negative sign essential)		(1)
	(M6 must be negative answer to M5 in kJ)		

Question Number	Acce	ptable Answers	Rejec	t	Mark
5 (b)(i)		$Fe(s) + Cu^{2+}(aq) \rightarrow Fe^{2+} (aq) + Cu(s)$			
	M7	formulae + balance			(1)
	M8	state symbols (M8 dependent on M7)			(1)

Question Number	Accep	table Answers	Reject	Mark
5 (b)(ii)	М9	Fe loses electrons therefore oxidised		(1)
	M10	\underline{Cu}^{2+} gains electrons therefore reduced		(1)
	or			
	М9	$\underline{\text{Fe}}$ loses electrons, $\underline{\text{Cu}}^{2+}$ gains electrons		
	M10	<u>Fe</u> oxidised, \underline{Cu}^{2+} reduced		
	(must	be answered in terms of <u>electron transfer</u>)		

SECTION B

Question Number	Accepta	able Answers	Reject	Mark
6 (a)(i)		O₂ and N₂ have different b.pts. / boil off at different temperatures		(1)
	M2 :	fractional distillation		(1)
	M3	liquid air		(1)
	M4	N_2 boils off before O_2/N_2 has lower b.pt.		(1)
	(М4 соц	uld score both M1 and M4)		

Question Number	Acceptable Answers	Reject	Mark
6 (a)(ii)	M1 spill <u>burns brighter</u> / <u>continues to burn</u> in O ₂		(1)
	M2 spill is <u>extinguished</u> in N ₂		(1)
	(do not accept answers in terms of a glowing splint / lighted splint rekindles in O_2 / no effect with N_2)		

Question	Acceptable	Answers	Reject	Mark
Number				
6 (a)(iii)	Names of a	ny two gases + uses		(1x2)
	Helium neon argon	balloons, air/helium mixture for diving, inert atmosphere for welding advertising signs, lights etc inert atmosphere for welding extraction of metals preserving food		
	krypton xenon	electric lamps, discharge tubes, lasers etc arc lamps, lasers		

Question Number	Accep	table Answe	rs		Reject	Mark
6 (a)(iv)	M1	<i>(name)</i> car	bon diox	ide		(1)
	M2/M3	3 CH₄	+ 202	\rightarrow CO ₂ + 2H ₂ O		
	M2	formulae	(1)			(1)
	M3	balance	(1)	(M3 dependent on M2)		(1)

Question	Accep	otable Answers	Reject	Mark
Number				
6 (b)(i)	M1	correct arrangement for triple bond		(1)
	M2	1 lone pair on each N atom		(1)
		(M2 dependent on M1)		
	M3	triple bond strong / hard to break		(1)

Question Number	Accep	table Answers	Reject	Mark
6 (b)(ii)	M1	300 -550°C		(1)
	M2	150 - 400 atm		(1)
	M3	(name) <u>iron</u> catalyst		(1)
	M4	low temperature because exothermic reaction		(1)
	M5	high pressure because less mol(e)s/volume on right		(1)
	M6	low temperature means slow rate		(1)
	M7	use higher/compromise temperature (to increase rate)		(1)
	M8	add catalyst to increase rate		(1)

Question Number	Accep	table A	Answers	Reject	Mark
6 (b)(iii)	M1	mole	s NH ₄ Cl = 0.535/53.5 mol = 0.01 mol		(1)
	M2	mole	$s NH_3$ formed = 0.01		(1)
	M3	volun	ne NH ₃ = 0.01 x 24 or 24000 = 0.24 dm^3 / 240 cm^3		(1)
	(ecf f	rom M	1 to M2)		
	(ecf f	rom M2	2 to M3, M3 = answer M2 x 24)		
	(acc	(accept any correct method for 3 marks)			
	eg	M1	53.5g NH_4Cl gives 24 dm^3 of NH_3		
		M2	0.533g gives (0.533 x 24) / 53.5 (ecf from M_r)		
		M3	= 0.24 dm ³ / 240 cm ³ (ecf from M2)		

Question Number	Acceptable Answers		Reject	Mark
7 (a)(i)	M1 allotropy	an <u>elemen</u> t can exist in two (or more) forms in the <u>same physical state</u>	substance molecule compound atom	(1)
		pic / α clinic / β		(1) (1)

Question Number	Accep	table Answers	Reject	Mark
7 (a)(ii)	M1	A and B		(1)
	M2	addition of oxygen / increase in oxidation state of S		(1)

Question Number	Accep	table Answers	Reject	Mark
7 (a)(iii)	M1	$2SO_2 + O_2 = 2SO_3$ (accept single arrow)		(1)
	M2	300 to 500°C		(1)
	М3	1 to 3 atms		(1)
	M4	V_2O_5 / vanadium(V) oxide catalyst (M4 penalise any other oxidation state of V for)		(1)

Question Number	Acceptable Answers	Reject	Mark
7 (a)(iv)	M1 add SO ₃ to conc/98% sulphuric acid		(1)
	M2 add / dilute with water		(1)
	M3 gets too hot / mist of acid droplets / exothermic reaction / dangerous with qualification		(1)

Question Number	Acceptable Answers	Reject	Mark
7 (b)(i)	Incorrect reagent scores zero. Incomplete reagent eg dichromate lose M1 but allow M2		
	M1 (acidified) potassium dichromate / (VI) / K ₂ Cr ₂ O ₇ OR (acidified) potassium manganate / (VII) / KMnO ₄ potassium permanganate		(1)
	M2 colour change (from orange) to green OR (purple) to colourless		(1)
	(M1 penalise any other oxidation state of Mn or Cr but allow M2)		

Question Number	Acceptable Answers	Reject	Mark
7 (b)(ii)	$2NaOH + SO_2 \rightarrow Na_2SO_3 + H_2O$		
	M1 formulae		(1)
	M2 balance (M2 dependent on M1)		(1)
	M3 (name) sodium sulphite / sulphate(IV)		(1)
	(mark M3 independent of M1/M2, ignore other products in equation)		

Question Number	Accep	table Answers	Reject	Mark
7 (c)(i)	M1	heat / 150 to 200°C / use hot conditions		(1)
	M2	$C_2H_5OH \rightarrow C_2H_4 + H_2O$		(1)
	М3	role of H_2SO_4 : dehydrating agent / removes water		(1)
(ii)	(M2	allow CH ₃ CH ₂ OH and CH ₂ =CH ₂ / CH ₂ CH ₂)	C ₂ H ₆ O	
	M4	warm / heat (60 to 100°C)		(1)
	M5	$CH_3COOH \ + \ C_2H_5OH \ \to \ CH_3COOC_2H_5 \ + \ H_2O$		(1)
	M6	role of H_2SO_4 : catalyst / to increase rate		(1)
	M7	structure (M7 could be scored in the equation) O		(1)
		$CH_3 \cdot C - OCH_2CH_3$ allow C_2H_5		
	M8	ethyl ethanoate (Mark M8/M7 independently)		(1)

Question Number	Acceptable Ansv	wers	Reject	Mark
8 (a)(i)	M1 sodium h	nas delocalised electrons (in solid and liquid)		(1)
	M2 electron	s <u>move</u> (to carry the current)		(1)
	M3 NaCl has	s ions / is an ionic compound		(1)
	M4 ions fixe	ed in solid / cannot move / only vibrate		(1)
	M5 ions can	move in liquid state		(1)

Question Number	Accep	table Answers	Reject	Mark
8 (a)(ii)	M1	covalent compounds consist of molecules		(1)
	M2	weak attractive forces between molecules / intermolecular forces / Van der Waals forces		(1)
	M3	ionic compounds consist of positive and negative ions / oppositely charged ions		(1)
	M4	strong attraction between ions		(1)
	M5	hence covalent particles / molecules further apart than solid particles / ions in solid state		(1)

Question Number	Acceptable Answers	Reject	Mark
8 (a)(iii)	M1 gas is hydrogen / H ₂ (accept H ₂ in equation)		(1)
	M2 HCl in water is acidic / forms hydrochloric acid / forms ions / is ionic		(1)
	M3 H ⁺ (aq) ions present in water (gives acidic properties)		(1)
	M4 HCl in methylbenzene consists of molecules / remains covalent		(1)

Question Number	Acceptable Answers	Reject	Mark
8 (a)(iv)	M1 powder reacts faster		(1)
	M2 powder has a larger surface area		(1)
	M3 so more (frequent) collisions (between acid and solid)		(1)
	(M2/M3 dependent on M1)		

Question Number	Acceptable Answers	Reject	Mark
	Q8b(i) and (ii) require descriptions of experiments and a statement of the observation made.		
8 (b)(i)	M1 t.t / flask with H ₂ O ₂ only		(1)
	M2 t.t / flask with H_2O_2 and MnO_2 / catalyst		(1)
	M3 gas evolved / effervescence with catalyst OR gas evolved with catalyst only		(1)
	For M1/M2: apparatus must be mentioned M3: observation mark can be scored independently		

Question Number	Accep	otable Answers	Reject	Mark
8 (b)(ii)	M1	weigh sample of catalyst		(1)
	M2	add to H_2O_2 and allow reaction to go to completion		(1)
	M3	filter off catalyst		(1)
	M4	dry catalyst		(1)
	M5	reweigh to see if mass is the same		(1)

Question Number	Accep	table Answers	Reject	Mark
9 (a)(i)	M1	moles CuFeS ₂ = 367000 / 183.5 = 2000 (accept 2)		(1)
	M2	moles Cu = 2000 (accept 2)		(1)
	M3	mass Cu = 63.5 x 2 or 2000 g = 127 <u>kg</u> / 127000 <u>g</u>		(1)
	(M2 (M3	ecf from M1, M2 = M1 answer) ecf from M2, answer 63.5 x M2, insist on units)		
	OR	M1 734 kg/g CuFeS ₂ gives 254 kg/g Cu		
		M2 367 kg/g CuFeS ₂ gives (367 254 / 734) kg/g		
		M3 = 127kg / 127000g		

Question	Acceptable Answers	Reject	Mark
Number			
9 (a)(ii)	SO ₂ and water form acid rain / SO ₂ is a source of acid rain		(1)
	(ignore reference to global warming / ozone layer)		

Question Number	Acceptable Answers	Reject	Mark
9 (b)(i)	M1 electrolyte: name (aqueous) copper sulphate (solution)		(1)
	M2 pure copper cathode		(1)
			(1)
	M3 impure copper anode		(1)
	M4 cathode; $Cu^{2+} + 2e \rightarrow Cu$		(1)
	M5 anode: $Cu \rightarrow Cu^{2+} + 2e$		
	M6 any <u>one</u> observation brown deposit on cathode / blue solution remains / cathode increase in size or mass anode decreases in size or mass		(1)

Question Number	Acceptable Answers	Reject	Mark
9 (b)(ii)	M1 reduction at cathode		(1)
	M2 (Cu ²⁺) gains electrons / oxidation state of Cu decreases (from +2 to 0)		(1)
	(M1 must be in agreement with the answer in part b(i))		

Question Number	Acceptable Answers	Reject	Mark
9 (b)(iii)	M1 2 faradays give 63.5 g copper		(1)
	M2 200 f gives 6350 g		(1)

Question Number	Acceptable Answers	Reject	Mark
9 (c)	Any 2 chemical characteristics 2x(1)		1+1
	with examples from <u>Cu</u> chemistry2 x (1)		1+1
	variable valency / oxidation state		
	e.g. Cu(I) and Cu(II) or formulae / name of compounds		
	coloured salts/ions		
	e.g. blue CuSO ₄ / blue solutions of CuSO ₄ or Cu(NO ₃) ₂ (ignore reference to CuO)		
	forms complexes		
	e.g. $[Cu(NH_3)_4(H_2O)_2]^{2+}$ / tetraamminediaquacopper(II) (do not accept $[Cu(NH_3)_4 2H_2O]^{2+}$)		
	catalyst e.g. dehydrogenation of alcohol (accept CuSO4 in preparation of H2 from Zn and acid)		

Question Number	Acceptable Answers		Reject	Mark
9 (d)(i)	M1 blue precipitate			(1)
	M2/M3	$CuSO_4 + 2NaOH \rightarrow Cu(OH)_2 + Na_2SO_4$ Or $Cu^{2+} + 2OH^- \rightarrow Cu(OH)_2$		
M2 all formulae corre M3 balance (M3 depo		mulae correct ce <i>(M3 dependent on M2)</i>		(1) (1)

Question Number	Acceptable Answers		Mark
9 (d)(ii)	M1 black solid/residue OR turns black		(1)
	M2 (red / yellow / orange) / brown gas (M1/M2ignore other observations such as me steam evolved etc,)	elting,	(1)
	$2Cu(NO_3)_2 \rightarrow 2CuO + 4NO_2 + O_2$		
	M3 all formulae correct M4 balance <i>(M4 dependent on M3)</i>		(1) (1)