

Mark Scheme (Results) Summer 2008

GCE

GCE O Level Chemistry

7081/02

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Question Number	Acceptable Answers		Reject	Mark
1 (a)	$\frac{4c}{5v} \times \frac{2}{3v} \times \frac{2}{3v}$	δ C		
	 all plots correct (2) [9/10 plots correct (1)] Inne of best fit (1) 			(2)
Question	Acceptable Answers	Reject		Mark
Number		-	unita	
1 (b)(i)	10 (s) (1)	Penalise incorrect	units	(1)
Question Number	Acceptable Answers	Reject		Mark
1 (b)(ii)	(15 /60=) 0.25 / ¼ (1)			(1)
Question Number	Acceptable Answers	Reject		Mark
1 (c)	M1 moles $H_2 = 60/24000$ OR 2.50 x 10 ⁻³ (1) M2 mass of Mg = 2.5 x 10 ⁻³ x 24 = 0.06 (1) M2 dependent on the use of 24000 cm ³ in M1 0.06			(1) (1)
Question	M2 dependent on the use of 24000 cm ³ Acceptable Answers	Reject		Mark
Number 1 (d)	M1 increasesM1 incorre does not sM2 greater surface area(1)M3 more (effective) collisions per unit time/ more frequent collisions(1)			(1) (1) (1)

7081/02 O-Level Chemistry Mark Scheme - June 2008

Question Number	Acceptable Answers	Reject	Mark
2 (a)(i)	carboxylic acid group identified (1)		(1)
	(circle around COOH only)		

Question Number	Acceptable Answers	Reject	Mark
2 (a)(ii)	ester group identified (1)		(1)
	(circle around OCO or OCOCH ₃)		

Question Number	Acceptable Answers	Reject	Mark
2 (b)(i)	$C_6H_9NO_5$ (1)		(1)

Question Number	Acceptable Answers	Reject	Mark
2 (b)(ii)	M1 mass of carbon = 6 x 12 = 72 (1) [ecf from C atoms in b(i)]		(1)
	M2 (72 x 100)/175 = 41.14 / allow 41.1 (1) [ecf from M1]	41	(1)

Question Number	Acceptable Answers	Reject	Mark
2 (c)(i)	bubbles / effervescence / fizz (1)	Carbon dioxide	(1)
		Gas	
		Contradiction	

Question Number	Acceptable Answers	Reject	Mark
2 (c)(ii)	$2H^+ + CO_3^{2^-} \rightarrow H_2O + CO_2$ (2) allow (1) mark for $2H^+ + CO_3^{2^-} \rightarrow H_2CO_3$ or $H^+ + CO_3^{2^-} \rightarrow H_2O + CO_2$		(2) or (1)
	(1)		

Number		Reject	Mark
2 (d)	M1 Sweeterex / molecules / particles diffuse / molecules / particles move (through the coffee) (1)		(1)
	M2 (Sweeterex) molecules / particles in collision (with other molecules) (1)		(1)

Question Number	Acceptable Answers	Reject	Mark
3 (a)	$CH_2 = CH-CH_3$ (1)		(1)
	Butene / but-1-ene (1)		(1)
	70 (1)		(1)

Question	Acceptable Answers	Reject	Mark
Number			
3 (b)	boiling point increases as length of carbon chain increases (1)		(1)

Question Number	Acceptable Answers	Reject	Mark
3 (c)(i)	addition / hydration (1)		(1)

Question Number	Acceptable Ans	swers		Reject	Mark
3 (c)(ii)	нн н-С-С-О-н нн	(1)	Structure must show the bonds but allow OH	-C-H-O	(1)

Question	Acceptable Answers	Reject	Mark
Number			
3 (d)(i)	$CH_3CH_2OH + O_2 \rightarrow CH_3COOH + H_2O (1)$	C_2H_6O and $C_2H_4O_2$	(1)
	Accept C ₂ H ₅ OH and CH ₃ CO ₂ H		

Question Number	Acceptable Answers	Reject	Mark
3 (d)(ii)	oxidation / redox (1)	combustion	(1)

Question Number	Acceptable Answers	Reject	Mark
3 (e)(i)	sodium ethoxide (1)		(1)

Question	Acceptable Answers		Reject	Mark
Number				
3 (e)(ii)	chloroethane / ethyl chloride	(1)		(1)

Question Number	Acceptable Answers	Reject	Mark
4 (a)	17 and 18 (1)		(1)
	17 and 20 (1)		(1)

Question Number	Acceptable Answers	Reject	Mark
4 (b)	³⁵ CI to ³⁷ CI 3 to 1 / 75% to 25%(1)		(1)
	If ³⁵ CI and ³⁷ CI not stated, the first number refers to ³⁵ CI		

Question Number	Acceptable Answers	Reject	Mark
4 (c)(i)	$Fe + 2HCI \rightarrow FeCI_2 + H_2$		(2)
			or
	Correct formulae (1)		(1)
	Balnced equation (1)		(1)

Question Number	Acceptable Answers	Reject	Mark
4 (c)(ii)	$2Fe + 3CI_2 \rightarrow 2FeCI_3 (2)$		(2) or
	Correct formulae (1)		(1)
	Balanced equation (1)		(1)

Question Number	Acceptable Answers	Reject	Mark
4 (d)	 M1 Add (aqueous) sodium hydroxide / NaOH / (aqueous) ammonia / NH₃. (1) Allow M2/M3 for partially correct reagent eg OH⁻ ion /hydroxide / alkali M2 Fe²⁺ gives green precipitate (1) M3 Fe³⁺ gives brown /red brown /orange precipitate 	Incorrect or no reagent scores (0)	(1)(1)(1)
	(1) There are other possible reagents, eg acidified $KMnO_4$		

Question Number	Acceptable Answers	Reject	Mark
5 (a)	M1 hexagonal structure (minimum of 2 fused hexagons) (1)		(1) (1)
	M2 layers (minimum of 2 layers) (1)		
	M2 dependent on at least one hexagon in M1		

Question Number	Acceptable Answers	Reject	Mark
5 (b)	M1 contain delocalised electrons / electron cloud (between layers) (1)		(1)
	M2 (delocalised) electrons move (to carry current) (1)		(1)

Question Number	Acceptable Answers	Reject	Mark
5 (c)(i)	exothermic <u>because</u> : energy of products lower than reactants / energy released (in forming bonds) is greater than energy required (to break bonds) (1)	Heat given out	(1)

Question Number	Acceptable Answers		Mark
5 (c)(ii)	M1 incomplete combustion (-) 110 kJ mol ⁻¹ (1) M2 complete combustion (-) 391 to (-)399 kJ mol ⁻¹ (1) M3 both M1 / M2 shown as negative values (1)		(1)(1)(1)
	MS both MT / MZ Shown as negative values (1)		(1)

Question Number	Acceptable Answers	Reject	Mark
5 (d)	M1 gives out less heat (1) M2 poisonous gas CO formed	Acid rain Attacks ozone	(1)
	CO attacks haemoglobin / red blood cells forms carboxyhaemoglobin / CO causes asphyxia (1)	Harmful / pollutant gas without qualification	(1)

Question Number	Acc	eptable Answers	Reject	Mark
6 (a)	M1	chemical reaction / decomposition brought about by passage of electricity (1)		
	M2	raw material identified as bauxite (1)		
	М3	electrolyte is purified bauxite / alumina / aluminium oxide / Al ₂ O ₃ (1)		
	M4	(dissolved in) molten (1)		
	M5	cryolite (1)		
	M6	graphite / carbon electrodes / cathode (1)		
	M7	aluminium formed at cathode (1)		
	M8	$AI^{3+} + 3e^{-} \to AI (1)$		
	M9	aluminium collects at bottom of cell / aluminium siphoned off (1)		(9)

Question	Acceptable Answers	Reject	Mark
Number			
6 (b)	M1 separation of liquids on basis of boiling point difference (1)		
	M2 raw material identified as crude oil / petroleum (1)		
	M3 heat (in a furnace) (1)	Heat in column	
	M4 to vaporise / crude oil becomes vapour (1)	column	
	M5 (vapours) pass into fractionating column (1)		
	M6 temperature gradually falls rising up the tower (1)		
	M7 (petrol) fraction condenses / becomes liquid (1)		
	M8 petrol collected near the top of tower (1)		(8)
	Points could be scored on a labelled diagram		

6 (c) M1 when the rate of reaction is increased by the addition of a catalyst (1) M2 the catalyst remains unchanged at the end of the reaction / the catalyst provides an alternative route of lower energy of activation (1) M3 starting materials sulphur dioxide (1) M4 and air (1) M5 catalyst identified as vanadium(V) oxide / V ₂ O ₅ (1) M6 temperature 300 - 550 °C (1)	Question Number	Acceptable Answers	Reject	Mark
(8) M7 pressure 1 – 3 atm (1) M8 $2SO_2 + O_2 \rightarrow 2SO_3$ (1)		 addition of a catalyst (1) M2 the catalyst remains unchanged at the end of the reaction / the catalyst provides an alternative route of lower energy of activation (1) M3 starting materials sulphur dioxide (1) M4 and air (1) M5 catalyst identified as vanadium(V) oxide / V₂O₅ (1) M6 temperature 300 - 550 °C (1) M7 pressure 1 - 3 atm (1) 	other ox state	(8)

Question Number	Acceptable Answers	Reject	Mark
7 (a)	M1 heat the (blue) copper(II) sulphate (in a test tube) (1) M2 colour change to white (1) M3 colourless liquid condenses near top of tube water collected in cooled receiver (1) M4 turns blue / anhydrous cobalt chloride paper pink (1) M5 $CuSO_4.5H_2O \rightarrow CuSO_4 + 5H_2O$ (1) Allow boils at 100° for M4 M3 could be scored for holding $CoCl_2$ paper in vapours	Addition of water to white CuSO4	(5)

Question Number	Acceptable Answers	Reject	Mark
7 (b)	 M1 add iron to specified copper(II) salt <u>solution</u> (1) M2 pink-brown / red brown solid formed / deposit 	Metal / oxide reactions	
	(1) M3 Zn + Cu ²⁺ \rightarrow Cu + Zn ²⁺ / or molecular		
	(1)		
	M4 add iron to specified zinc salt <u>solution</u> (1)		
	M5 no reaction (so iron does not displace zinc ions) (1)		
	Allow for M4/M5 add Zn to $FeSO_4(aq)$, grey black solid		
	Allow Zn and Cu in FeSO ₄ (aq) for all marks		
	Alternative answers:		
	M1 add the 3 metals to dilute hydrochloric/ sulphuric acid (1)		
	M2 copper has no reaction (1)		
	M3 zinc and iron: effervescence /bubbles / fizz (1)		(5)
	M4 zinc gives faster effervescence / more vigorous		(-)
	M5 Zn (or Fe) + 2HCI \rightarrow ZnCl ₂ (or FeCl ₂) + H ₂ (1)		

Question Number	Acceptable Answe	ers	Reject	Mark
7 (c)		pads soaked in (concentrated) c acid and in (concentrated) ammonia 1)	lf gases are used	
	M2 place pads a	at opposite ends of a (long) tube (1)		
	0	deposit / fumes / smoke um chloride) (1)		
	M4 nearer to hy	drogen chloride end of tube (1)		
	M5 NH ₃ + HCI	$I \rightarrow NH_4CI$ (1)		(5)
	Labelled diagram	could score M1 to M4		(5)
	If gas jars of NH_3 and the set of NH_3 is a set of NH_3 is a set of NH_3 is a set of NH_3 is a set of NH_3 is a set of NH_3	and HCI mixed together, allow M5		

Question Number	Acceptable Answers	Reject	Mark
7 (d)	M1 two test tubes / flasks containing equal volumes of hydrochloric acid of same concentration (1)		
	M2 heat one test tube / flask (1)		
	M3 add equal masses equal surface area / same amount of zinc to test tubes / flask (1)		
	M4 reaction in warm acid more vigorous / more effervescence (1)		(5)
	M5 Zn + 2HCI \rightarrow ZnCl ₂ + H ₂ / or ionic (1)		

7 (e)	M1 Grind / crush leaf in solvent / alcohol / propanone / acetone (1)	water	
	M2 spot onto chromatography / filter paper (1)	water	
	M3 stand paper in solvent / alcohol / propanone / acetone (to elute) (1)	water	
	M4 spot just above solvent (1)		(5)
	M5 series of spots obtained / colours separate (1)		(5)
	Labelled diagram could score M2 to M5.		

Question Number	Acce	eptable Answers	Reject	Mark
8 (a)	M1	coloured compounds / ions (1)	oxides	
	M2 (1)	copper (II) compounds / ions are blue /green	CuO black	
		(ignore any reference to the colour of Cu(I))		
	M3	variable oxidation states (1)		
	M4	Cu^{+} and Cu^{2+} / $Cu(I)$ and $Cu(II)$ (1)		
	M5	form complex ions (1)		
	M6	diaquatetraamminecopper(II) (ion) / Cu[(NH ₃) ₄ (H ₂ O) ₂] ²⁺ (1)		(6)
	•	ow use as catalysts; Cu for dehydrogenation of hols)		

Question Number	Acce	eptable Answers	Reject	Mark
8 (b)	M1 M2	heat copper (1) in air / oxygen / O ₂ (1)		
	M3 M4	$2Cu + O_2 \rightarrow 2CuO$ (1) add excess copper(II) oxide (1)		
	M5 M6 M7	to (dilute) sulphuric acid / H_2SO_4 (1) heat / warm (1) $CuO + H_2SO_4 \rightarrow CuSO_4 + H_2O$ (1)	conc H₂SO₄ but mark on	
	M8	filter off (excess) copper(II) oxide (1)	If precipitate of CuSO₄ no further marks	
	M9	heat filtrate to remove some water / to crystallise (1)	heat to dryness no further marks	
	M10	allow (remaining solution) to cool (1)		
	M11	filter off crystals / decant (1)		
	M12	leave to dry / dry with tissue (1)		
	M1 nitri	rnative add concentrated nitric acid / dilute c acid (1)		(12)
		heat copper (II) nitrate (1) Cu + $4HNO_3 \rightarrow Cu(NO_3)_2 + 2NO_2$ O		
	: 4H ₂ C	$3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO +$		
		$2Cu(NO_3)_2 \rightarrow 2CuO + 4NO_2 + O_2$ (1)		

Question Number	Acceptable Answers	Reject	Mark
8 (c)(i)	M1 carbon dioxide (1) M2 $CuCO_3 \rightarrow CuO + CO_2$ (1)		(2)

Question Number	Acceptable Answers	Reject	Mark
8 (c)(ii)	M1 water (1)		
	M2 Cu(OH) $_2 \rightarrow$ CuO + H $_2$ O (1)		(2)

Question Number	Acceptable Answers	Reject	Mark
8 (c)(iii)	M1 nitrogen dioxide / nitrogen (IV) oxide AND oxygen(1)		
	$2Cu(NO_3)_2 \rightarrow 2CuO + 4NO_2 + O_2$ (1)		
	M2 all formulae correct (1)		(3)
	M3 balanced equation (1)		

Question Number	Acceptable Answers	Reject	Mark
9 (a)	M1 $H_2N-(CH_2)_6-NH_2$ (1)		
	M2 HOOC-(CH ₂) ₄ -COOH (1)	OH-OC-	
	-HN-(CH ₂) ₆ -N-C-(CH ₂) ₄-CO- │		
	M3 minimum of - CH ₂ -N-C- CH ₂ - (1) H O		
	M4 overall correct repeating unit (10		
	Allow ecf on incorrect values of x and y in M1 and M2. Allow the use of x and y in polymer structure		(4)

Question Number	Acceptable Answers	Reject	Mark
9 (b)	M1 polyester (1)		
	M2 HOOC-()-COOH / allow $-(C_6H_4)$ - (1)	OH-OC-(
	M3 HO-()-OH / allow -(CH_2 . CH_2)- (1)	OH-()-OH	(3)

Question Number	Acceptable Answers			Mark
9 (c)(i)	addition	condensation		
	M1 unsaturated monomer (1)	M2 monomer(s) must have two different functional groups (1)		
	M3 no other product / no mass loss (1)	M4 small molecule lost / loss of mass (1)		(4)
	Must be comparative proper	ties to score >2 marks.		

Question Number	Acceptable Answers	Reject	Mark
9 (c)(ii)	 M1 cracking (1) M2 use high temperature / specified temperature 450-900° or catalyst / zeolite / aluminosilicate / Al₂O₃ / SiO₂ (1) M3 long-chain alkane (1) M4 changed into (short-chain) alkane plus alkene / ethene (1) 	heat other specified catalyst	
	M5 e.g. $C_8H_{18} \rightarrow C_6H_{14} + C_2H_4$ (1) any alkane to ethene + other alkane		(5)

Question Number	Acceptable Answers	Reject	Mark
9 (d)(i)	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ - (1) must have bonds at each end and must contain 6 C atoms		(1)

Question Number	Acceptable Answers	Reject	Mark
9 (d)(ii)	poly(ethyne) contains carbon-carbon double bonds / unsaturated whereas poly(ethene) does not contain double bonds/ contains carbon-carbon single bonds / is saturated (1) must contain a statement for both polymers.		(1)

Question Number	Acceptable Answers	Reject	Mark
9 (d)(iii)	M1 poly(ethene) CH_2 ONLY (1)	Any extra formula is a contradiction.	(1)
	M2 poly(ethyne) CH ONLY (1)		(1)

Question Number	Acceptable Answers				Reject	Mark
9 (d)(iv)	Reagent (1)		Bromine water or Br ₂ /H ₂ O	Acidified / alkaline KMnO ₄ /potassium manganate (VII) / permanganate	K ₂ Cr ₂ O ₇	(1)
	Obs with poly(ethene)	(1)	no reaction	No reaction		(1)
	Obs with poly(ethyne)	(1)	Goes colourless	Goes colourless / green (if alkaline)		(1)

Question Number	Acceptable Answers	Reject	Mark
9 (d)(v)	M1 combustion (1)		(1)
	M2 carbon monoxide / carbon dioxide and water / CO / CO ₂ and H ₂ O (1)		(1)