Mark Scheme (Results) Summer 2008

GCE

GCE O Level Chemistry
7081/ 02

7081/02 0-Level Chemistry Mark Scheme - June 2008

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (b)(i)	10 (s) (1)	Penalise incorrect units	(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (b)(ii)	$(15 / 60=) 0.25 / 1 / 4$ (1)		(1)

Question Number	Acceptable Answers	Reject	Mark
1 (c)	M1 moles $\mathrm{H}_{2}=60 / 24000$ OR 2.50×10^{-3} (1) M2 mass of $\mathrm{Mg}=2.5 \times 10^{-3} \times 24=0.06$ (1) M2 dependent on the use of $24000 \mathrm{~cm}^{3}$ in M1	Answer only scores (0) $\begin{array}{r} (60 / 1000= \\ 0.06) \end{array}$	(1) (1)
Question Number	Acceptable Answers	Reject	Mark
1 (d)	M1 increases (1) M2 greater surface area (1) M3 more (effective) collisions per unit time/ more frequent collisions	M1 incorrect, does not score M2/ M3	(1) (1) (1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (a) (i)}$	carboxylic acid group identified (1) (circle around COOH only)	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (a) (i i)}$	ester group identified (1) (circle around OCO or OCOCH_{3})		(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (b) (i) ~}$	$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NO}_{5}(\mathbf{1})$		(1)

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 (b) (i i)}$ | M1 mass of carbon $=6 \times 12=72 \quad$ (1)[ecf from C
 atoms in b(i)] | | (1) |
| | M2 $(72 \times 100) / 175=41.14$ / allow 41.1 (1) [ecf from M1] | 41 | (1) |

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (c) (i) ~}$	bubbles / effervescence / fizz (1)	Carbon dioxide Gas Contradiction	(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (c) (i i) ~}$	$2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ (2)		(2) or
	allow (1) mark for $2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$		
or $\mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$		(1)	
	(1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (d) ~}$	M1 Sweeterex / molecules / particles diffuse / molecules / particles move (through the coffee) (1) M2 (Sweeterex) molecules / particles in collision (with other molecules) (1)		(1)

(Total 10 marks)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)	$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{3} \quad$ (1)		$\mathbf{(1)}$
	Butene / but-1-ene (1)		$\mathbf{(1)}$
	$70 \quad$ (1)	$\mathbf{(1)}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (b)	boiling point increases as length of carbon chain increases (1)		$\mathbf{(1)}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (c) (i)}$	addition / hydration (1)		$\mathbf{(1)}$

Question Number	Acceptable Answers	Rej ect	Mark
3 (d)(i)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$ Accept $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (d)(ii)	oxidation / redox (1)	combustion	(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}(\mathbf{e})(\mathbf{i})$	sodium ethoxide (1)		$\mathbf{(1)}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (e)(ii)	chloroethane / ethyl chloride (1)		(1)

Question Number	Acceptable Answers	Reject	Mark
4 (a)	17 and 18 (1)		(1)
	17 and 20 (1)		$\mathbf{(1)}$

Question Number	Acceptable Answers	Reject	Mark
4 (b)	${ }^{35} \mathrm{Cl}$ to ${ }^{3 /} \mathrm{Cl} 3$ to 1 / 75\%to 25\%(1) If ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ not stated, the first number refers to ${ }^{35} \mathrm{Cl}$		(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (c) (\mathbf { i })}$	$\mathrm{Fe}+2 \mathrm{HCl} \rightarrow \mathrm{FeCl}_{2}+\mathrm{H}_{2}$		$\mathbf{(2)}$
	Correct formulae (1)		or
	Balnced equation (1)	$\mathbf{(1)}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4}$ (c)(ii)	$2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}$ (2)		(2)
	Correct formulae (1)		or
	Balanced equation (1)	(1)	

Question Number	Acceptable Answers	Reject	Mark
4 (d)	M1 Add (aqueous) sodium hydroxide / NaOH / (aqueous) ammonia / NH_{3}. (1) Allow M2/ M3 for partially correct reagent eg OH^{-}ion / hydroxide / alkali $\mathrm{M} 2 \mathrm{Fe}^{2+}$ gives green precipitate M3 Fe^{3+} gives brown / red brown / orange precipitate (1) There are other possible reagents, eg acidified KMnO_{4}	Incorrect or no reagent scores (0)	(1) (1) (1)

Question Number	Acceptable Answers	Rej ect	Mark
5 (a)	M1 hexagonal structure (minimum of 2 fused hexagons) (1)		(1)
	M2 layers (minimum of 2 layers) (1)		(1)
	M2 dependent on at least one hexagon in M1		

Question Number	Acceptable Answers	Rej ect	Mark
5 (b)	M1 contain delocalised electrons / electron cloud (between layers) (1)		(1)
	M2 (delocalised) electrons move (to carry current) (1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (c)(i)	exothermic because: energy of products lower than reactants / energy released (in forming bonds) is greater than energy required (to break bonds) (1)	Heat given out	(1)

Question Number	Acceptable Answers	Rej ect	Mark

| 5 (c)(ii) | M1 incomplete combustion (-) $110 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (1) | (1) |
| :--- | :--- | :--- | :--- |
| | M2 complete combustion (-) 391 to (-)399 $\mathrm{kJ} \mathrm{mol}^{-1}$ (1) | (1) |
| | M3 both M1/ M2 shown as negative values (1) | (1) |

Question Number	Acceptable Answers	Rej ect	Mark
5 (d)	M1 gives out less heat (1)	Acid rain Attacks ozone	(1)
M2poisonous gas CO formed CO attacks haemoglobin / red blood cells forms carboxyhaemoglobin / CO causes asphyxia (1) Harmful / pollutant gas without qualification	(1)		

Question	Acceptable Answers	Reject	Mark
6 (a)	```M1 chemical reaction / decomposition brought about by passage of electricity (1) M2 raw material identified as bauxite (1) M3 electrolyte is purified bauxite / alumina / aluminium oxide / Al }\mp@subsup{\textrm{O}}{3}{ (1) M4 (dissolved in) molten (1) M5 cryolite (1) M6 graphite / carbon electrodes / cathode M7 aluminium formed at cathode \\ M8 \(\quad \mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}\) \\ M9 aluminium collects at bottom of cell / aluminium siphoned offNone```		(9)

Question Number	Acceptable Answers	Reject	Mark
6 (b)	M1separation of liquids on basis of boiling point difference (1)M2 raw material identified as crude oil / petroleum (1)M3Meat (in a furnace) (1)M4to vaporise / crude oil becomes vapour (1)M5	Heat in column	(8)

Question Number	Acceptable Answers	Reject	Mark
6 (c)	```M1 when the rate of reaction is increased by the addition of a catalyst (1) M2 the catalyst remains unchanged at the end of the reaction / the catalyst provides an alternative route of lower energy of activation (1) M3 starting materials sulphur dioxide \\ M4 and air (1) \\ M5 catalyst identified as vanadium(V) oxide / \(\mathrm{V}_{2} \mathrm{O}_{5}\) \\ M6 temperature \(300-550^{\circ} \mathrm{C}\) \\ M7 pressure 1-3 atm \\ M8 \(2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}\)None```	Any other ox state of V	(8)

Question	Acceptable Answers	Reject	Mark
7 (a)	M1 heat the (blue) copper(II) sulphate (in a test tube) (1) M2 colour change to white M3 colourless liquid condenses near top of tube water collected in cooled receiver M4 turns blue / anhydrous cobalt chloride paper pink (1) $\begin{equation*} \text { M5 } \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CuSO}_{4}+5 \mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$ Allow boils at 100° for M4 M3 could be scored for holding CoCl_{2} paper in vapours	Addition of water to white CuSO_{4}	(5)

Question Number	Acceptable Answers	Reject	Mark
7 (b)	M1 add iron to specified copper(II) salt solution (1) M2 pink-brown / red brown solid formed / deposit (1) M3 $\mathrm{Zn}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Cu}+\mathrm{Zn}^{2+} /$ or molecular (1) M4 add iron to specified zinc salt solution (1) M5 no reaction (so iron does not displace zinc ions) (1) Allow for M4/ M5 add Zn to $\mathrm{FeSO}_{4}(\mathrm{aq})$, grey black solid Allow Zn and Cu in $\mathrm{FeSO}_{4}(\mathrm{aq})$ for all marks Alternative answers: M1 add the 3 metals to dilute hydrochloric/ sulphuric acid (1) M2 copper has no reaction (1) M3 zinc and iron: effervescence / bubbles / fizz (1) M4 zinc gives faster effervescence / more vigorous M5 $\mathrm{Zn}($ or Fe$)+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}\left(\right.$ or $\left.\mathrm{FeCl}_{2}\right)+\mathrm{H}_{2}$ (1)	Metal / oxide reactions	(5)

Question Number	Acceptable Answers	Reject	Mark
7 (c)	M1 cotton wool pads soaked in (concentrated) hydrochloric acid and in (concentrated) ammonia (solution) (1) M2 place pads at opposite ends of a (long) tube M3 white ring / deposit / fumes / smoke (of ammonium chloride) (1) M4 nearer to hydrogen chloride end of tube M5 $\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$ Labelled diagram could score M1 to M4 If gas jars of NH_{3} and HCl mixed together, allow M5 only	If gases are used	(5)

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{7 (d)}$ | M1
 of two test tubes / flasks containing equal volumes
 hydrochloric acid of same concentration (1) | | |
| | M2 heat one test tube / flask (1)
 M3 add equal masses equal surface area / same
 amount of zinc to test tubes / flask (1) | | |
| M4reaction in warm acid more vigorous / more
 effervescence (1) | | (5) | |
| M5 $\quad \mathrm{Zn}+2 \mathrm{HCl} \rightarrow \quad \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$ / or ionic (1) | | | |

7 (e)	M1 Grind / crush leaf in solvent / alcohol / propanone / acetone (1) M2 spot onto chromatography / filter paper M3 stand paper in solvent / alcohol / propanone / acetone (to elute) (1) M4 spot just above solvent (1) M5 series of spots obtained / colours separate Labelled diagram could score M2 to M5.	water water	(5)

Question	Acceptable Answers	Reject	Mark
8 (a)	M1 coloured compounds / ions (1) M2 copper (II) compounds / ions are blue / green (1) (ignore any reference to the colour of $\mathrm{Cu}(\mathrm{I})$) M3 variable oxidation states (1) M4 Cu^{+}and $\mathrm{Cu}^{2+} / \mathrm{Cu}(\mathrm{I})$ and $\mathrm{Cu}(\mathrm{II})$ (1) M5 form complex ions (1) M6 diaquatetraamminecopper(II) (ion) / $\begin{equation*} \mathrm{Cu}\left[\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+} \tag{1} \end{equation*}$ (allow use as catalysts; Cu for dehydrogenation of alcohols)	oxides CuO black	(6)

Question Number	Acceptable Answers	Reject	Mark
8 (b)		conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ but mark on If precipitate of CuSO_{4} no further marks heat to dryness no further marks	(12)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{8}$ (c)(i)	M1 carbon dioxide (1)		
	$\mathrm{M} 2 \quad \mathrm{CuCO}_{3} \rightarrow \mathrm{CuO}+\mathrm{CO}_{2} \quad$ (1)		(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{8}$ (c)(ii)	M1 water (1)		
	M2 $\mathrm{Cu}(\mathrm{OH})_{2} \rightarrow \mathrm{CuO}+\mathrm{H}_{2} \mathrm{O}$	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{8}$ (c)(iii)	M1 nitrogen dioxide / nitrogen (IV) oxide AND oxygen (1) M2 all $\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{CuO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ (1) formulae correct (1) M3 balanced equation (1)		

Question Number	Acceptable Answers	Reject	Mark
9 (a)	M1 $\quad \mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{NH}_{2} \quad$ (1) M2 $\mathrm{HOOC}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{COOH}$ M3 minimum of M4 overall correct repeating unit (10 Allow ecf on incorrect values of x and y in M1 and M2. Allow the use of x and y in polymer structure	OH-OC-	(4)

Question Number	Acceptable Answers	Reject	Mark
9 (b)	M1 polyester (1)		
	M2 HOOC-()-COOH / allow - $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)-\quad$ (1)	$\mathrm{OH}-\mathrm{OC}-($	
	M3 HO-()-OH / allow -($\left.\mathrm{CH}_{2} \cdot \mathrm{CH}_{2}\right)-\quad$ (1)	$\mathrm{OH}-(\quad)-\mathrm{OH}$	(3)

Question Number	Acceptable Answers		Reject	Mark
9 (c)(i)	addition M1 unsaturated monomer (1)	condensation		
		M2 monomer(s) must have two different functional groups (1)		
	M3 no other product / no mass loss (1)	M4 small molecule lost / loss of mass (1)		(4)
	Must be comparative prop	s to score >2 marks.		

Question	Acceptable Answers	Reject	Mark
9 (c)(ii)	```M1 cracking (1) M2 use high temperature / specified temperature 450-900 or catalyst / zeolite / aluminosilicate / \(\mathrm{Al}_{2} \mathrm{O}_{3}\) / \(\mathrm{SiO}_{2}\) (1) M3 long-chain alkane (1) M4 changed into (short-chain) alkane plus alkene / ethene (1) M5 e.g. \(\mathrm{C}_{8} \mathrm{H}_{18} \rightarrow \mathrm{C}_{6} \mathrm{H}_{14}+\mathrm{C}_{2} \mathrm{H}_{4}\) any alkane to ethene + other alkane```	heat other specified catalyst	(5)

Question Number	Acceptable Answers	Reject	Mark
9 (d)(i)	$-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ must have bonds at each end and must contain 6 C atoms		(1)

Question Number	Acceptable Answers	Reject	Mark
9 (d)(ii)	poly(ethyne) contains carbon-carbon double bonds / unsaturated whereas poly(ethene) does not contain double bonds/ contains carbon-carbon single bonds / is saturated (1) must contain a statement for both polymers.	(1)	

Question Number	Acceptable Answers	Reject	Mark	
9 (d)(iii)	M1 poly(ethene) CH_{2}	ONLY (1)	Any extra formula is a contradiction.	(1)
	M2 poly(ethyne) CH ONLY (1)		(1)	

Question	Acceptable Answers			Reject	Mark 1
9 (d)(iv)	Reagent (1)	Bromine water or $\mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}$ Acidified / alkaline KMnO / potassium manganate (VII) / permanganate		$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	(1)
	Obs with poly(ethene) (1)	no reaction	No reaction		(1)
	Obs with poly(ethyne) (1)	Goes colourless	Goes colourless / green (if alkaline)		(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{9 ~ (d) (v) ~}$	M 1 combustion (1)		(1)
	$\mathrm{M} 2 \quad$carbon monoxide / carbon dioxide and water / $\mathrm{CO} / \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O} \quad$ (1)		(1)

