

Mark Scheme (Results) January 2008

GCE

GCE O Level Chemistry (7081) Paper 2

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

SECTION A

Question	Answer	Reject	Mark
Number		-	
1 (a)	suitable metal carbonate + suitable acid	NOT c H ₂ SO ₄	(1)
	<u>concentrated</u> sulphuric acid / <u>anhydrous</u> calcium chloride (accept fomulae)		(1)
	downward delivery / upward displacement of air		(')

Question	Answer	Reject	Mark
Number			
1 (b)	any ammonium salt + a strong alkali		(1)
	calcium oxide / CaO / quicklime		(1)
	upward delivery / downward displacement of air		(1)

Question Number	Answer	Reject	Mark
1(c)	hydrochloric acid + potassium manganate(VII) / potassium permanganate / KMnO ₄ / manganese(IV) oxide / manganese dioxide / MnO ₂		(1)
	concentrated acid (dependent on HCI)		(1)
	concentrated sulphuric acid / anhydrous calcium chloride (accept formulae)		(1)
	downward delivery / upward displacement of air		(1)

Question	Answer	Reject	Mark
Number			
2 (a)(i)	oppositely charged <u>ions</u>	Formation of an ionic	(1)
		bond by electron transfer	
	attraction between ions		(1)
2 (0)(1)	attraction between ions	bond by electron transfer	(1)

Question	Answer	Reject	Mark
Number		-	
2 (a)(ii)	a shared pair of electrons / electron pair sharing		(1)
	attraction between bond pair and (two) nuclei		(1)

Question Number	Answer		Reject	Mark
2 (b)(i)	Na ⁺ and Cl ⁻			(1)
	Correctly placed ALLOW: correctly placed Na and C1 atoms or +/- charges	Na ⁺ Cl ⁻ Na ⁺ Cl ⁻ Cl ⁻ Na ⁺ Cl ⁻ Na ⁺ Na ⁺ Cl ⁻ Na ⁺ Cl ⁻		(1)

Question Number	Answer	Reject	Mark
2 (b)(ii)	M1 3 bond pairs		(1)
	M2 other electrons correct (dependent on M1)		(1)

Question Number	Answer	Reject	Mark
2 (c)	weak intermolecular forces / weak attractions between molecules little heat / energy needed to overcome them / separate <u>molecules</u>	easily broken	(1) (1)

Question Number	Answer	Reject	Mark
3 (a)	fractional distillation / fractionation		(1)
	<u>liquid</u> air		(1)

Question	Answer	Reject	Mark
Number			
3 (b)(i)	magnesium dissolves / reacts, (but copper remains)		(1)

Question	Answer	Reject	Mark
Number			
3 (b)(ii)	$Mg + H_2SO_4 \rightarrow MgSO_4 + H_2 \text{ (or ionic)}$		(1)
	Allow Cu on both sides of the equation		

Question	Answer	Reject	Mark
Number			
3 (b)(iii)	Filtration / centrifuge / decant		(1)

Question	Answer	Reject	Mark
Number			
3 (c)(i)	Niger Red		(1)

Question Number	Answer	Reject	Mark
3 (c)(ii)	Sudan Orange		(1)

Question	Answer	Reject	Mark
Number		-	
3 (c)(iii)	correct measurements for dye (3.0-3.5) and solvent front		(1)
	(3/6) = 0.5 (3.5/6) = 0.58		(1)
	or any value in between 3 and 3.5		

Question	Answer	Reject	Mark
Number		-	
3 (c)(iv)	two circles with (Chad) Yellow outside (Mali) Blue.		(1)
	Ignore circle which represents the solvent front		

Question	Answer	Reject	Mark
Number			
4 (a)(i)	long-chain - contains many carbon atoms / bonds	Continuous chains.	(1)
	(ignore reference to hydrogen atoms, penalise H ₂)	Long chains of C	
		atoms	
	hydrocarbon - contains carbon and hydrogen only		(1)

Question Number	Answer	Reject	Mark
4 (a)(ii)	cracking		(1)
	high temperature / 450°C to 900°C /	heat / sufficient temperature	(1)
	catalyst (zeolite / aluminosilicate / SiO_2 / AI_2O_3)	any other catalyst	
	M2 dependant on M1	(contradiction)	
	(ignore any reference to pressure)		

Question	Answer	Reject	Mark
number			
4 (a)(iii)	M1 $C_2H_4 + C_3H_6$		(1)
	M2 $C_{13}H_{28} \rightarrow C_{2}H_{4} + C_{3}H_{6} + C_{8}H_{18}$		(1)
	(allow balance equation if M1 incorrect, provided formulae given in M1 are correct formulae for an alkane / alkene)		

Question Number	Answer	Reject	Mark
4 (b)(i)	50 - 100 atmos (or 5000-10000 kPa)	High pressure	(1)
	acid catalyst / H ₃ PO ₄ / phosphoric acid (Ignore any reference to temperature)		(1)

Question	Answer	Reject	Mark
Number			
4 (b)(ii)	$C_2H_4 + H_2O \rightarrow C_2H_5OH$	C ₂ H ₆ O	(1)
	(Accept CH ₃ CH ₂ OH, ignore state symbols)		

Question	Answer	Reject	Mark
Number			
4 (b)(iii)	fast reaction / continuous / pure product	High yield	(1)
	(ignoro reference to cost)	Answers based on a	
		disadvantage of	
		fermentation	

Question	Answer	Reject	Mark
Number			
5 (a)(i)	Burette ONLY	Biurette / birette	(1)
		Burette with any other	
		piece of apparatus eg	
		burette and pipette	

Question	Answer	Reject	Mark
Number			
5 (a)(ii)	(faint) pink / (pale) pink	Any reference to red	(1)
	accept colourless to pink		

Question	Answer	Reject	Mark
Number			
5 (a)(iii)	add dropwise (near the end-point)	repeat titration	(1)
	swirl the flask / wash down the inside of the flask /		(1)
	use of white tile /		any 1
			for
			M2

Question	Answer	Reject	Mark
Number			
5 (b)(i)	moles NaOH = 0.0246 x 0.50		(1)
	= 0.0123		(1)
	(0.123 scores (1) only)		

Question Number	Answer	Reject	Mark
5 (b)(ii)	moles HX = 0.0123 (allow te)		(1)

Question	Answer	Reject	Mark
Number			
5 (b)(iii)	M1 $M_r = 1.50 / 0.0123$ (allow te)		(1)
	M2 M_r = 121.95 / 122 (dependent on correct expression for M1))	(1)

Question Number	Answer	Reject	Mark
5 (c)	To obtain accurate / average / concordant titrations / values		(1)

TOTAL FOR SECTION A: 50 MARKS

SECTION B

Question	Answer	Reject	Mark
Number			
6 (a)(i)	substance that speeds up / alters the rate of a reaction	Specific catalyst other than MnO ₂	(1)
	without being used up itself / remains unchanged / does not take part		(1)

Question	Answer	Reject	Mark
Number			
6 (a)(ii)	(re)lights a <u>glowing</u> splint		(1)

Question	Answer	Reject	Mark
Number			
6 (b)(i)	Sealed flask / glass tube + cork / connections (allow dropping funnel/ thistle funnel below the surface of the liquid) suitable collection method (syringe / labelled graduated tube over water)		(1)
	(If flask is heated negates M1)		

Question	Answer	Reject	Mark
Number			
6 (b)(ii)	Scale using over half of the graph paper.		(1)
	7 or 8 correct plots		2x1 = (2)
	smooth curves		2x1 = (2)

Question	Answer	Reject	Mark
Number			
6 (b)(iii)	32 - 36 seconds		(1)

Question	Answer	Reject	Mark
Number			
6 (c)(i)	gradient decreases with time		(1)
	concentration of H_2O_2 decreases / fewer particles in same volume		(1)
	fewer collisions in unit time / less frequent collisions		(1)

Question Number	Answer	Reject	Mark
6 (c)(ii)	gradient increases as concentration increases		(1)
	more particles (in a given volume)		(1)
	more frequent collisions		(1)
	NOTE 'frequent' in either (i) or (ii) DO NOT PENALISE OMISSION TWICE		

Question Number	Answer	Reject	Mark
6 (d)	Experiment 3 gradient less than Experiment 1 final volume 30 cm ³		(1) (1)
	Experiment 4 gradient greater than Experiment 2 final volume 90 cm ³		(1) (1)

Question Number	Answer	Reject	Mark
6 (e)	M1 60/24000 = 0.0025 mol		(1)
	M2 0.005 mol H ₂ O ₂		(1)
	$M3 \qquad M_r H_2 O_2 = 34$		(1)
	M4 mass $H_2O_2 = 0.005 \text{ x } 34 = 0.17 \text{ g}$		(1)
	If 24000 not used in M1, score M3 and M4 only If ratio 1 : 2 not used in M2, score M1, M3 and M4 If genuine arithmetical error made lose 1 mark.		

Question	Answer	Reject	Mark
Number			
7 (a)	M1 sulphur burnt / heated in <u>air</u>	oxygen	(1)
	M2 S + O ₂ \rightarrow SO ₂		(1)
	M3 SO_2 mixed with air	oxygen	(1)
	M4 at 350° to 500°C		(1)
	M5 at pressure of 1 atm to 3 atm	atmospheric pressure/ 1 atm	(1)
	M6 use catalyst of vanadium (V) oxide / V_2O_5		(1)
	M7 $2SO_2 + O_2 \rightarrow 2SO_3$		(1)
	M8 SO_3 dissolved in 98% / conc sulphuric acid		(1)
	M9 water added (to give conc H ₂ SO ₄ / required concentration)		(1)
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		(1)
	$OR SO_3 + H_2O \rightarrow H_2SO_4$		
1			

Question	Answer	Reject	Mark
Number			
7 (b)	M1 H^+ SO_4^{2-} OH^-		(1)
	M2 $2H^+ + 2e^- \rightarrow H_2$		(1)
	M3 $4OH^- \rightarrow 2H_2O + O_2 + 4e^-$		(1)
	M4 H^+ gains electrons / are reduced		(1)
	M5 OH ⁻ lose electrons / are oxidised		(1)
	M6 H_2 at cathode / O_2 at anode		(1)

Question	Ans	wer	Reject	Mark
7 (c)(i)	M1	add zinc oxide to acid until in excess / no more dissolves		(1)
	M2	heat / warm		(1)
	M3	filter off excess /(or excess understood from M1)		(1)
	M4	partially evaporate and cool / leave to crystallise		(1)
	M5	$ZnO + H_2SO_4 \rightarrow ZnSO_4 + H_2O$		(1)

Question	Answer	Reject	Mark
Number			
7 (c)(ii)	M1 2.52 g of water		(1)
	M2 moles $ZnSO_4 = 3.22 / 161 = 0.02$		(1)
	M3 moles $H_2O = 2.52 / 18 = 0.14$		(1)
	M4 $x = 0.14 / 0.02 = 7$		(1)
	If M1 incorrect, score M2 and M3 (conseq, mass/18)		
	If M2 incorrect, score M1 and M3		
	If M1 and M2 incorrect, score M3 only (conseq, mass/18)		
	Alternative		
	M1 5.74 / M _r hydrate = 3.22 / 161		(1)
	M2 M _r = 287		(1)
	M3 $xH_2O = 287 - 161 = 126$		(1)
	M4 x = $126 / 18 = 7$		(1)

Question Number	Answer		Reject	Mark
8 (a)	Group I	Group VII		
	M1 1 electron in outer shell	M2 7 electrons in outer shell		(1) (1)
	M3 lose 1 electron	M4 gain 1 electron		(1) (1)
	M5 shiny/grey metals/solids	M6 chlorine - green gas M7 bromine - brown liquid M8 iodine grey/black solid	M5 Solids only	(1) (1) (1) (1)
		<i>Alternative if M6,7,8 not scored. Gas to liquid to solid (1) Colour darkens (1)</i>		
	M9 more reactive down group M11 increase size /	M10 less reactive down group		(1) (1) (1)
	from nucleus / increased shielding/ more shells			
	M12 less attraction for outer electron			(1)
	M13 outer e ⁻ lost more easily			(1)
	Need reference to outer e ⁻ to score all 3 marks M11 to M13	M14 smallest atom has strongest attraction for electron		(1)
	M9 incorrect Lose M11.12.13	M15 easier to gain an Electron		(1)
		M10 incorrect Lose M14 and M15		

Question Number	Answer		Reject	Mark
8 (b)	There must be contrasting	statements to score.		
	<u>Potassium</u>	<u>Calcium</u>		
	ignites / explodes	does not ignite		
	moves on surface	sinks / does not move on surface		Any 3 by (1)
	melts	does not melt		mark each
	fizzes vigorously	fizzes less vigorously		cuch
	If no comparisons allow 1 m potassium in calcium	ark for 3 correct observations of		
	$2K + 2H_2O \rightarrow 2KOH + H$	² formulae balance		(1) (1)
	$Ca + 2H_2O \rightarrow Ca(OH)_2 +$	H ₂ formula balance		(1) (1)

Question Number	Answer	Reject	Mark
8 (c)	M1 8 electrons in outer shell (He = 2) / complete octet/ Full outer shell	Stable configuration only	(1)
	M2 do not gain or lose electrons (reference to both gain and lose)		(1)
	M3 use: light bulbs / in bags for food preservation / inert atmosphere for welding / steel making manufacture of titanium dating rocks		(1)

Question Number	Answer	Reject	Mark
9 (a)(i)	M1 different forms of the same <u>element</u>		(1)
	M2 in the same physical state (M2 dependent on M1)		(1)

Question Number	Answer	Reject	Mark
9 (a)(ii)	M1 macromolecular / giant molecule		(1)
	M2 (carbon atoms) covalently bonded		(1)

Question	Answer	Reject	Mark
	diamond totrahodral		(1)
9 (a)(III)			(1)
	graphite - layers/ hexagonal Allow 1 mark for each C in diamond bonds to 4 other and each C in graphite bonds to 3 other, if no marks awarded above		(1)

Question	Answer	Reject	Mark
(a)(iy)	diamond - covalent bonds between all atoms		(1)
3 (a)(iv)	diamond - covarent bonds between <u>an atoms</u>		(1)
	covalent bonds are strong / difficult to break / rigid structure		(1)
	graphite - weak forces (of attraction) between layers		(1)
	so layers slide		(1)

Question	Answer	Reject	Mark
Number			
9 (b)(i)	carbon dioxide / CO ₂		(1)
	plentiful supply / excess of air	sufficient / right amount / good / enough	(1)
	$C + O_2 \rightarrow CO_2$		(1)
	carbon monoxide / CO		(1)
	limited / small supply of air	bad / less	(1)
	$2C + O_2 \rightarrow 2CO / C + \frac{1}{2}O_2 \rightarrow CO$		(1)
		1	

Question	Answer	Reject	Mark
Number			
9 (b)(ii)	either CO ₂ turns limewater milky but CO has no effect		(1) (1)
	or CO burns when lighted taper is applied CO ₂ extinguishes the taper		(1) (1)

Question	Answer	Reject	Mark
Number			
9(b)(iii)	Carbon monoxide is the reducing agent (can score from equation)		(1)
	(black) goes to red brown / pink brown / pink	red OR brown	(1)
	$CuO + CO \rightarrow Cu + CO_2$		(1)

Question Number	Answer	Reject	Mark
9 (c)	M1 $M_r MgCO_3 = 84$ and $M_r Na_2CO_3 = 106$		(1)
	M2 mol MgCO ₃ = $3.36/84 = 0.04$		(1)
	M3 mol $Na_2CO_3 = 0.04$		(1)
	M4 mass = 0.04 x 106 = 4.24g		(1)
	If 1 incorrect M_r in M1 treat as arithmetic error, lose 1 mark If both M_r incorrect max 2 for question.		
	If 1:1 ratio not used score M1, M2 and M4.		
	M2 and M3 could be scored as 3.36 x 106 84		

TOTAL FOR PAPER: 100 MARKS