# Mark Scheme (Results) J anuary 2008 

## GCE

## GCE O Level Chemistry (7081) Paper 2

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- $\quad$ All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


## SECTION A

| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (a) | suitable metal carbonate + suitable acid | NOT <br> $\mathrm{cH}_{2} \mathrm{SO}_{4}$ | (1) |
|  | (ancentrated sulphuric acid / anhydrous calcium chloride <br> (accept fomulae) <br> downward delivery / upward displacement of air |  | (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (b) | any ammonium salt + a strong alkali |  | (1) |
|  | calcium oxide / CaO / quicklime |  | (1) |
|  | upward delivery / downward displacement of air |  | (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( c )}$ | hydrochloric acid + potassium manganate(VII) / potassium <br> permanganate / $\mathrm{KMnO}_{4} /$ manganese(IV) oxide / manganese <br> dioxide / $\mathrm{MnO}_{2}$ <br> concentrated acid (dependent on HCl$)$ | (1) |  |
| concentrated sulphuric acid / anhydrous calcium chloride <br> (accept formulae) <br> downward delivery / upward displacement of air | (1) |  |  |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( a ) ( i ) ~}$ | oppositely charged ions |  |  |
| attraction between ions |  |  |  |$\quad$| Formation of an ionic |
| :--- |
| bond by electron transfer |, | (1) |
| :--- |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2}$ (a)(ii) | a shared pair of electrons / electron pair sharing |  | (1) |
|  | attraction between bond pair and (two) nuclei |  | (1) |


| Question <br> Number | Answer |  | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2 (b)(i) | $\mathrm{Na}^{+}$and Cl |  | (1) |  |
|  | Correctly placed <br> ALLOW: correctly <br> placed Na and Cl <br> atoms or <br> charges | $\mathrm{Na}^{+} \mathrm{Cl}^{-} \mathrm{Na}^{+} \mathrm{Cl}^{-}$ <br> $\mathrm{Cl}^{-} \mathrm{Na}^{+} \mathrm{Cl}^{-} \mathrm{Na}^{+}$ <br> $\mathrm{Na}^{+} \mathrm{Cl}^{-} \mathrm{Na}^{+} \mathrm{Cl}^{-}$ |  | (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 2 (b)(ii) | M1 3 bond pairs |  | (1) |
|  | M2 other electrons correct (dependent on M1) |  | (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ~ ( c ) ~}$ | weak intermolecular forces / weak <br> attractions between molecules <br> little heat / energy needed to overcome <br> them / separate molecules | easily broken | (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (a) | fractional distillation / fractionation |  | (1) |
|  | liquid air |  | $\mathbf{( 1 )}$ |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (b)(i) | magnesium dissolves / reacts, (but copper remains) |  | (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (b)(ii) | $\mathrm{Mg}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{H}_{2}$ (or ionic) <br> Allow Cu on both sides of the equation | (1) |  |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (b)(iii) | Filtration / centrifuge / decant |  | (1) |


| Question Number | Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 3 (c)(i) | Niger Red |  | (1) |


| Question | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| Number |  |  |  | Sudan Orange $\quad$ (1) | $\mathbf{3 ~ ( c ) ( i i ) ~}$ |
| :--- |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (c)(iii) | correct measurements for dye (3.0-3.5) and solvent front <br> $(3 / 6)=0.5 \quad(3.5 / 6)=0.58$ <br> or any value in between 3 and 3.5 |  | $\mathbf{( 1 )}$ |
| $\mathbf{( 1 )}$ |  |  |  |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (c)(iv) | two circles with (Chad) Yellow outside (Mali) Blue. <br> Ignore circle which represents the solvent front |  | (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{4}$ (a)(i) | Iong-chain - contains many carbon atoms / bonds <br> (ignore reference to hydrogen atoms, penalise $\left.\mathrm{H}_{2}\right)$ <br> hydrocarbon - contains carbon and hydrogen only | Continuous chains. <br> Long chains of C C <br> atoms | (1) |


| Question | Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4 (a)(ii) | ```cracking high temperature / \(450^{\circ} \mathrm{C}\) to \(900^{\circ} \mathrm{C}\) / catalyst (zeolite / aluminosilicate / \(\mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}\) ) M2 dependant on M1 (ignore any reference to pressure)``` | heat / sufficient temperature any other catalyst (contradiction) | (1) <br> (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4 (a)(iii) | $\mathrm{M} 1 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{3} \mathrm{H}_{6}$ |  | (1) |
|  | $\mathrm{M} 2 \mathrm{C}_{13} \mathrm{H}_{28} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{8} \mathrm{H}_{18}$ <br> (allow balance equation if M 1 incorrect, provided formulae <br> given in M 1 are correct formulae for an alkane / alkene) | (1) |  |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{4}$ (b)(i) | $50-100$ atmos (or $5000-10000 \mathrm{kPa}$ ) |  |  |
| acid catalyst $/ \mathrm{H}_{3} \mathrm{PO}_{4} /$ phosphoric acid <br> (Ignore any reference to temperature) | High pressure | (1) |  |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{4 ~ ( b ) ( i i ) ~}$ | $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ <br> (Accept $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$, ignore state symbols) | $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ | (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{4}$ (b)(iii) | fast reaction / continuous / pure product <br> (ignore reference to cost) | High yield <br> Answers based on a <br> disadvantage of <br> fermentation | (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{5}$ (a)(i) | Burette ONLY | Biurette / birette <br> Burette with any other <br> piece of apparatus eg <br> burette and pipette | (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{5}$ (a)(ii) | (faint) pink / (pale) pink <br> accept colourless to pink | Any reference to red | (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{5}$ (a)(iii) | add dropwise (near the end-point) <br> swirl the flask / <br> wash down the inside of the flask / <br> use of white tile / | repeat titration | (1) |
| (1) |  |  |  |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{5}$ (b)(i) | moles $\mathrm{NaOH}=0.0246 \times 0.50$ <br> $=0.0123$ <br> $(0.123$ scores (1) only) |  | (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{5}$ (b)(ii) | moles HX $=0.0123$ (allow te) |  | $\mathbf{( 1 )}$ |


| Question Number | Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 5 (b)(iii) | M1 $\quad M_{r}=1.50 / 0.0123$ (allow te) M2 $\quad M_{r}=121.95 / 122$ (dependent on correct expression for M1) |  | $\begin{aligned} & (1) \\ & (1) \end{aligned}$ |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{5}$ (c) | To obtain accurate / average / concordant titrations / values |  | (1) |

## SECTION B

| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6}$ (a)(i) | substance that speeds up / alters the rate of a <br> reaction <br> without being used up itself / remains unchanged / <br> does not take part | Specific <br> catalyst <br> other than <br> $\mathrm{MnO}_{2}$ | (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6}$ (a)(ii) | (re)lights a glowing splint |  | (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6}$ (b)(i) | Sealed flask / glass tube + cork / connections <br> (allow dropping funnel/ thistle funnel below the <br> surface of the liquid) <br> suitable collection method (syringe / labelled <br> graduated tube over water) <br> (If flask is heated negates M1) | (1) |  |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6}$ (b)(ii) | Scale using over half of the graph paper. |  | $\mathbf{( 1 )}$ |
|  | 7 or 8 correct plots |  | $\mathbf{2 x 1 = ( 2 )}$ |
|  | smooth curves | $\mathbf{2 x 1 = ( 2 )}$ |  |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6}$ (b)(iii) | $32-36$ seconds |  | (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6}$ (c)(i) | gradient decreases with time <br> concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ decreases / fewer particles in <br> same volume <br> fewer collisions in unit time / less frequent collisions | (1) |  |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6}$ (c)(ii) | gradient increases as concentration increases |  | (1) |
|  | more particles (in a given volume) |  |  |
|  | more frequent collisions |  |  |
|  | NOTE 'frequent' in either (i) or (ii) <br> DO NOT PENALISE OMISSION TWICE |  | (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6}$ (d) | Experiment 3 <br> gradient less than Experiment 1 <br> final volume $30 \mathrm{~cm}^{3}$ <br> Experiment 4 <br> gradient greater than Experiment 2 <br> final volume $90 \mathrm{~cm}^{3}$ |  | (1) |
| $\mathbf{l}$ |  | $\mathbf{( 1 )}$ <br> $\mathbf{( 1 )}$ |  |


| Question Number | Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 6 (e) | M1 $60 / 24000=0.0025 \mathrm{~mol}$ <br> M2 0.005 mol H $\mathrm{O}_{2}, ~\left(\begin{array}{ll}\mathrm{M}_{\mathrm{r}} \mathrm{H}_{2} \mathrm{O}_{2}=34 \\ \text { M3 } & \\ \text { M4 } & \text { mass } \mathrm{H}_{2} \mathrm{O}_{2}=0.005 \times 34=0.17 \mathrm{~g}\end{array}\right.$ <br> If 24000 not used in M1, score M3 and M4 only If ratio 1:2 not used in M2, score M1, M3 and M4 If genuine arithmetical error made lose 1 mark. |  | (1) <br> (1) <br> (1) <br> (1) |


| Question | Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 7 (a) | M1 sulphur burnt / heated in air <br> $\mathrm{M} 2 \mathrm{~S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$ <br> M3 $\mathrm{SO}_{2}$ mixed with air <br> M4 at $350^{\circ}$ to $500^{\circ} \mathrm{C}$ <br> M5 at pressure of 1 atm to 3 atm <br> M6 use catalyst of vanadium (V) oxide / $\mathrm{V}_{2} \mathrm{O}_{5}$ <br> M7 $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$ <br> M8 $\mathrm{SO}_{3}$ dissolved in 98\%/ conc sulphuric acid <br> M9 water added (to give conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ / required concentration) <br> M10 $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ <br> $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7} \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4}$ <br> $\mathrm{OR} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ | oxygen <br> oxygen <br> atmospheric <br> pressure/ 1 <br> atm | (1) <br> (1) |


| Question Number | Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 7 (b) | $\begin{array}{ll} \mathrm{M} 1 & \mathrm{H}^{+} \mathrm{SO}_{4}^{2^{-}} \mathrm{OH}^{-} \\ \mathrm{M} 2 & 2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \\ \mathrm{M} 3 & 4 \mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+4 \mathrm{e}^{-} \\ \mathrm{M} 4 & \mathrm{H}^{+} \text {gains electrons / are reduced } \\ \mathrm{M} 5 & \mathrm{OH}^{-} \text {lose electrons / are oxidised } \\ \mathrm{M} 6 & \mathrm{H}_{2} \text { at cathode } / \mathrm{O}_{2} \text { at anode } \end{array}$ |  | (1) <br> (1) <br> (1) <br> (1) <br> (1) <br> (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{7}$ (c)(i) | M1 add zinc oxide to acid until in excess / no more dissolves |  | (1) |
|  | M2 heat / warm |  | $\mathbf{( 1 )}$ |
|  | M3 filter off excess / (or excess understood from M1) | (1) |  |
|  | M4 partially evaporate and cool / leave to crystallise |  | (1) |
|  | M5 $\mathrm{ZnO}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2} \mathrm{O}$ |  | $\mathbf{( 1 )}$ |


| Question Number | Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 7 (c)(ii) | ```M1 2.52 g of water M2 moles \(\mathrm{ZnSO}_{4}=3.22 / 161=0.02\) M3 moles \(\mathrm{H}_{2} \mathrm{O}=2.52\) / \(18=0.14\) M4 \(x=0.14 / 0.02=7\) If M1 incorrect, score M2 and M3 (conseq, mass/ 18) If M2 incorrect, score M1 and M3 If M1 and M2 incorrect, score M3 only (conseq, mass/ 18) Alternative M1 5.74/ \(\mathrm{M}_{\mathrm{r}}\) hydrate \(=3.22 / 161\) M2 \(M_{r}=287\) M3 \(\mathrm{xH}_{2} \mathrm{O}=287-161=126\) M4 \(x=126 / 18=7\)``` |  | (1) <br> (1) |



| Question Number | Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 8 (b) | There must be contrasting statements to score. <br> If no comparisons allow 1 mark for 3 correct observations of potassium in calcium |  | Any 3 by (1) mark each <br> (1) <br> (1) <br> (1) <br> (1) |


| Question Number | Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 8 (c) | M1 8 electrons in outer shell $(\mathrm{He}=2) /$ complete octet/ Full outer shell | Stable configuration only | (1) |
|  | M2 do not gain or lose electrons (reference to both gain and lose) |  | (1) |
|  | M3 use: light bulbs / in bags for food preservation / inert atmosphere for welding / steel making manufacture of titanium dating rocks |  | (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{9}$ (a)(i) | M1 different forms of the same element |  | (1) |
|  | M2 in the same physical state (M2 dependent on M1) |  | (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 9 (a)(ii) | M1 macromolecular / giant molecule |  | (1) |
|  | M2 (carbon atoms) covalently bonded |  | $\mathbf{( 1 )}$ |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 9 (a)(iii) | diamond - tetrahedral |  | (1) |
|  | graphite - layers/ hexagonal <br> Allow 1 mark for each C in diamond bonds to 4 other and <br> each C in graphite bonds to 3 other, if no marks awarded <br> above | (1) |  |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{9}$ (a)(iv) | diamond - covalent bonds between all atoms <br> covalent bonds are strong / difficult to break / <br> rigid structure | (1) |  |
|  | graphite - weak forces (of attraction) between layers <br> so layers slide | $\mathbf{( 1 )}$ |  |


| Question Number | Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 9 (b)(i) | carbon dioxide / $\mathrm{CO}_{2}$ <br> plentiful supply / excess of air $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$ <br> carbon monoxide / CO <br> limited / small supply of air $2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO} / \mathrm{C}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}$ | sufficient / right amount / good / enough <br> bad / less | (1) <br> (1) <br> (1) <br> (1) <br> (1) <br> (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{9}$ (b)(ii) | either $\mathrm{CO}_{2}$ turns limewater milky <br> but CO has no effect |  | (1) |
|  | or CO burns when lighted taper is applied <br> $\mathrm{CO}_{2}$ extinguishes the taper |  | (1) |


| Question <br> Number | Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 9(b)(iii) | Carbon monoxide is the reducing agent (can score <br> from equation) <br> (black) goes to red brown / pink brown / pink <br> $\mathrm{CuO}+\mathrm{CO} \rightarrow \mathrm{Cu}+\mathrm{CO}_{2}$ | red OR brown | (1) |


| Question Number | Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 9 (c) | M1 $\mathrm{M}_{\mathrm{r}} \mathrm{MgCO}_{3}=84$ and $\mathrm{M}_{\mathrm{r}} \mathrm{Na}_{2} \mathrm{CO}_{3}=106$ <br> M2 mol MgCO $3=3.36 / 84=0.04$ <br> M3 $\mathrm{mol} \mathrm{Na} \mathrm{CO}_{3}=0.04$ <br> M4 mass $=0.04 \times 106=4.24 \mathrm{~g}$ <br> If 1 incorrect $M_{r}$ in M1 treat as arithmetic error, lose 1 mark If both $M_{r}$ incorrect max 2 for question. <br> If $1: 1$ ratio not used score M1, M2 and M4. <br> M2 and M3 could be scored as $\frac{3.36 \times 106}{84}$ |  | (1) <br> (1) <br> (1) <br> (1) |

