Mark Scheme (Results)

 Summer 2007GCE 0

GCE O Level Chemistry (7081/ 02)

At the standardisation meeting, the mark scheme will be discussed. It may be amended in the light of the discussion and of provisional marking experience. Examiners will take part in an agreement trial. The marks will be compared and discussed. Items used in the agreement trial may be taken away from the meeting for reference purposes; these must be destroyed (shredded/ incinerated) at the conclusion of marking.

General Guidance on Marking

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge.

Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the Team Leader should be consulted through the review function.

Using the mark scheme

The mark scheme gives you:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/ word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3 Phrases/ words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.

7081/02

SECTION A

1 (a)
M1 concentrated sulphuric acid and ammonia react (to form a compound / ammonium sulphate)

M2 use anhydrous calcium chloride / calcium oxide
M3 ammonia is less dense than air / lighter than air
M4 the gas must be collected by upward delivery / syringe
OR use upward delivery
OR turn gas jar upside down
(b) $\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
formulae correct
equation balanced
Ignore state symbols
(c) turns (damp) red litmus paper blue OR turns Universal indicator blue / purple
smoke or white fumes / vapour with hydrogen chloride or put stopper of conc HCl bottle to gas
(d)

M1 (light) blue precipitate
$\begin{array}{ll}\text { M2 } & \text { precipitate dissolves to form darker blue solution } \\ \text { Or gives dark blue solution with excess ammonia }\end{array}$
M3 $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ or $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{SO}_{4}$

2 (a)
$\mathrm{Mg}+2 \mathrm{H}^{+} \rightarrow \mathrm{Mg}^{2+}+\mathrm{H}_{2} \quad$ accept $\mathrm{Mg}^{++} \mathrm{Mg}^{+2}$
Must NOT include spectator ions
Ignore state symbols
(b) (i) $71 / 72$
(ii) $160 \mathrm{~cm}^{3}$
(1)
(iii) $160 \mathrm{~cm}^{3}$
(1)
(iv) $57 \mathrm{~s}(\pm 2)$
(c) M 1 moles $\mathrm{H}_{2} / \mathrm{Mg}=160 / 24000=(0.00667)$

$$
\text { M2 } \underline{24 \times 160}=0.16 \mathrm{~g}
$$

24000
ecf from M1 if arithmetic error but must be based on use of 24000

M2 dependent on M1
Max (1) 150 used instead of 160 Answer only (0)
(d) ethanoic acid is a weaker acid / contains less H^{+}/

HCl is a stronger acid / contains more H^{+}/
Ethanoic acid is a weak acid AND HCl is a strong acid
Ethanoic acid is partially ionised AND HCl is fully ionised
(e) steeper graph: must start at origin
horizontal at $160 \mathrm{~cm}^{3}$

3 (a) (i) propane
(ii) ethene
(iii) methane
(b) (i) addition
(ii)

Ignore brackets, ignore n whether before or after formula
(c)
(i) $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

Accept $\mathrm{CH}_{2}=\mathrm{CH}_{2}$ or $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ or $\mathrm{CH}_{2} \mathrm{CH}_{2}$
Accept $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ but NOT $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ NOT $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{HO}$ NOT $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{HO}$
Ignore state symbols
(ii) acid catalyst / phosphoric acid (catalyst) (if acid specified it must be $\mathrm{H}_{3} \mathrm{PO}_{4}$)
pressure 50-100 atm
temperature $250-500^{\circ} \mathrm{C}$
ALLOW (1) for BOTH high pressure and high temperature
(d) forces of attraction between ethanol molecules greater than
between propane molecules
Or stronger intermolecular forces in ethanol
Or weaker intermolecular forces in propane
Or hydrogen bonding in ethanol AND van der Waals forces / induced dipoles in propane.
Or hydrogen bonding in ethanol but not in propane.
Any reference to breaking covalent bonds (0)

4 (a) (i)
M1 $\quad C=40 / 12 ; \quad H=6.7 / 1 ; \quad O=53.3 / 16$

$$
\begin{array}{lll}
=3.33 & 6.7 & =3.33
\end{array}
$$

M2 1:2:1
(1)

M3 $\quad \mathrm{CH}_{2} \mathrm{O}$
(1)

M1 is for dividing by A_{r}
Answer only scores (1)
(ii)

M1 $\frac{180}{30}=6$
M2 $\quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
M1 must be present to score both marks
ecf from part(a) for M1 only 180/ empirical formula mass
(b) yeast or zymase
temperature in range $25-40^{\circ} \mathrm{C}$
absence of oxygen/ air or anaerobic
(c) (i) Condensation (polymer) ignore any reference to starch /
carbohydrates
Or condensational
NOT condensed
(ii)

- 0 --- 0 - (or longer)

Or - O- - - 0 -
ALLOW - 0 -
n does not have to be given, ignore its position, before or after formula

5 (a)

Experiment	Temperature	Volume of hydrochloric acid added
I	28.0	0
II	30.0	5
III	31.5	10
IV	33.0	15
V	34.0	20
VI	34.5	25
VII	35.5	30
VIII	35.5	35

table with columns for temperature and volume (don't penalise if experiment column omitted)
temperatures correctly read must be to 1dp eg 28.0 not 28
(allow 1 if between 4 and 7 correct)
Penalise temperature in I II IV V only once for absence of dp
(b) correct plots
(allow 1 if between $4+7$ correct)
line of best fit Must go slightly above 34.5 (exptVI) to score mark

Plots consequential on readings in part (a)
(c) (i) $30\left(\mathrm{~cm}^{3}\right) \quad$) BOTH ANSWERS FROM GRAPH
(ii) $35.5\left({ }^{\circ} \mathrm{C}\right) \quad$)
(d) M1 sodium hydroxide and hydrochloric acid ratio of 1:1

M2 $\frac{2 \times 25}{30}=1.67 \quad$ ACCEPT 1.67 or 1.7 NOT 1.6
ecf from c(i) to denominator in M2
If $\mathrm{c}(\mathrm{i})$ is $35, \mathrm{M} 2=1.43$
ACCEPT
1.4

SECTION B

6 (a)

Reaction A

M1 heat

M2 (colour change from green) to black or goes black
M3 $\mathrm{CuCO}_{3} \rightarrow \mathrm{CuO}+\mathrm{CO}_{2}$

Reaction B

M4 add excess copper(II) oxide
M5 to dilute sulphuric acid OR sulphuric acid : NOT concentrated
sulphuric acid.
M6 colourless solution turns blue or forms blue solution
M7 filter off excess copper oxide
M8 $\mathrm{CuO}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
ACCEPT aq in equation for M5 and M6
Reaction C
M9 add sodium carbonate (solution) (if an insoluble carbonate is given allow M12 only)
M10 blue/ green precipitate
M11 filter off precipitate
M12 $\mathrm{CuSO}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CuCO}_{3}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
(b)

Copper oxide
M1 heat (in a combustion tube)
M2 (stream of (dry)) hydrogen gas / CO / NH3/ CH_{4}
M3 (black powder) becomes pink-brown or goes pink brown / red
brown
M4 $\mathrm{CuO}+\mathrm{H}_{2} \rightarrow \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$ or with alternative reagent
ACCEPT heating CuO with charcoal NOT coke
If coke or natural gas used allow m M1 M3 M4
Copper sulphate
M5 add zinc (powder) or $\mathrm{Fe} / \mathrm{Al} / \mathrm{Mg}$
M6 pink-brown precipitate / deposit or red brown ppt / deposit/ bluecolour fades

M7 filter (precipitate) / decant
M8 $\mathrm{Cu}^{2+}+\mathrm{Zn} \rightarrow \mathrm{Cu}+\mathrm{Zn}^{2+} \quad$) accept a molecular equation
(c)

M1 impure copper anode) if reversed (0)
M2 (pure) copper cathode)
M3 electrolyte of specified soluble copper salt solution
(marks may be obtained from a suitably labeled diagram)
M4 anode $\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$
M5 cathode $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$
ACCEPT e without charge for electron
M4/ M5 electrodes do not have to be specified, but if given must be correct. If electrode equations reversed, allow (1) for two correct electrode equations.

7 if reaction specified not used must score (0)
(a)

M1 heat (in test tube / boiling tube)
(1)

M2 (turns from blue) to off white or goes white
(1)

M3 add water
(1)

M4 (turns from white) to blue or goes blue
(1)

M5 $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CuSO}_{4}+5 \mathrm{H}_{2} \mathrm{O}$ must have reversible arrows
ACCEPT pair of equations ACCEPT $^{\text {CuSO }} 4 . \mathrm{xH}_{2} \mathrm{O} \leftrightarrow \mathrm{CuSO}_{4}+x \mathrm{H}_{2} \mathrm{O}$
(b)

M1 react CaCO_{3} chips / lumps with HCl AND react powdered CaCO_{3} with HCl
M2 same mass of CaCO_{3}, same temperature, same volume of HCl , same
concentration of HCL any 2 points score (1) mark
M3 measure time to collect same volume or measure volume of gas at different times or measure time to lose mass
M4 same volume in shorter time with powdered or results could be
given on labelled vol-time graph showing powdered reacts faster
M5 $\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(c)

M1 burn sulphur (in test tube) ALLOW heat
M2 $\quad \mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$
M3 add named indicator solution OR damp named indicator paper
M4 turns red
M5 $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$

(d)

M1 take temperature of iron(II) sulphate solution Or use thermometer
M2 add magnesium (ribbon)
M3 grey deposit or green solution fades or goes colourless
M4 temperature of reaction mixture higher or increase in temperature
M5 $\mathrm{Mg}+\mathrm{Fe}^{2+} \rightarrow \mathrm{Mg}^{2+}+\mathrm{Fe}$ or $\mathrm{Mg}+\mathrm{FeSO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{Fe}$
(e)

M1 soak separate wads of cotton wool in (concentrated) ammonia and
(concentrated) hydrochloric acid
M2 place at opposite ends of (long) glass tube
M3 white 'smoke' / fumes / solid forms
(1)

M4 nearer to hydrochloric acid end of the tube
M5 $\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$

8 (a) (i)
M1 relative formula mass $=5 \times 12+12 \times 1=72$
M2 $\frac{60 \times 100}{72}$ ecf on incorrect M_{r} in M1
M3 =83.3\% ALLOW 83 Answer only scores (1)
(ii)

M1 $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
(1)

M2 (2)-methylbutane
M3 $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
M4 (2-2)-Dimethylpropane
numbers used in names to indicate position of side chains must be correct to score.
Penalize sticks once only
(iii) alkanes
$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+2}$
$\mathrm{C}_{10} \mathrm{H}_{22}$) NOT structural formula or molecular and
(b) bonds broken:

M1 $\mathrm{C}=\mathrm{C}$ and $\mathrm{H}-\mathrm{H}$
M2 energy taken in $=610+432=1042 \mathrm{~kJ}$
OR M1 OR $3(\mathrm{C}-\mathrm{C})+10(\mathrm{C}-\mathrm{H})+1(\mathrm{C}=\mathrm{C})+1(\mathrm{H}-\mathrm{H})$
$\mathrm{M} 2=1038+4130+610+432=\underline{6210} \mathrm{~kJ}$
bonds formed:
M3 C-C, $2 \times \mathrm{C}-\mathrm{H}$
M4 energy given out $=346+2 \times 413=1172 \mathrm{~kJ}$
OR M3 Or $4(\mathrm{C}-\mathrm{C})+12(\mathrm{C}-\mathrm{H})$
M4 $=1384+4956=\underline{6340}$
If M2 and M4 correct score (2), if not check bonds broken and formed

M5 energy change $=1042-1172$ Or 6210-6340
M6 $\quad=-130 \mathrm{~kJ}$ or $\mathrm{kJ} \mathrm{mol}^{-1}$ Units must be given
M5 ecf from M2 and M4
M6 ecf from M5) only allow if M5 is for
) bonds broken - bonds formed
M7 Exothermic / endothermic
Stand alone mark based on sign of enthalpy change in M6.
continued
(c)
$\mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
M1 symbols correct (1)
M2 balance (1)
$\mathrm{C}_{5} \mathrm{H}_{12}+{ }^{11} /{ }_{2} \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}+6 \mathrm{H}_{2} \mathrm{O}$
M3 symbols correct (1)
M4 balance (1)
M5 less energy given out during incomplete combustion (1)
M6 less efficient / more expensive to use (1)
M7 carbon monoxide is poisonous / toxic (1)
M8 causes asphyxia explained in some way / forms carboxy haemaglobin (1)NOT greenhouse gasNOT bad for health

9 (a)
M1 bauxite
M2 anode reaction: $2 \mathrm{O}^{2-} \rightarrow \mathrm{O}_{2}+4 \mathrm{e}^{-} \quad$)
M3 cathode reaction: $\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al} \quad$)
M2/ M3 electrodes do not have to be specified, but if given must be correct. If electrode equations reversed, allow (1) for two correct electrode equations.
diagram to show:
M4 graphite / carbon anode)if reversed on diagram allow (1) for
M5 graphite / carbon cathode)graphite / carbon electrodes
M6 aluminium produced at cathode) could be scored from a
)specified cathode equation
M7 electrolyte of aluminium oxide / alumina / $\mathrm{Al}_{2} \mathrm{O}_{3}$
M8 (dissolved in)molten
M9 Cryolite / $\mathrm{Na}_{3} \mathrm{AlF}_{6}$
No (unlabelled) diagram, score max (3) for M4 to M9 If diagram not industrial, score max (3)
(b)

M1 e.g. iron / chromium / metal must be named
M2 iron oxide (powder (mixed)) with aluminium
(1)

M3 use of magnesium fuse or described
(1)

M4 (Very) exothermic / (lot of) heat given out / yellow flame molten iron formed / violent reaction
M5 $\mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \rightarrow 2 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}$
Incorrect metal allow M2 M3 M4
(c)

M1 aluminium 2.8.3
M2 aluminium ion 2.8
M3 oxygen 2.6
M4 oxide ion 2.8 if oxygen 2.8.6 accept oxide ion as 2.8.8
M5 Al^{3+} and O^{2-}
M6 2:3 ALLOW $2 \mathrm{Al}^{3+}$ and 30^{2-} Accept formula $\mathrm{Al}_{2} \mathrm{O}_{3}$ dependent on M5 (If M5 scored, allow ratio of Al to 0 is 2 to 3 for M6)
(d)
diagram to show:
M1 Al^{3+} ions \quad NOT + in circle without qualification eg Al^{3+} ions
M2 regular arrangement
M3 (random) electrons
M4 electrons described as delocalised / sea of electron
M5 electrons move or are mobile (to carry current)
Labelled diagram must show M1, M2 and M3
Total 25 marks

