

Mark Scheme (Results) January 2007

GCE

GCE O Level Chemistry (7081/02)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

SECTION A

1.	(a)	brow iron(FeCI Or Fe	wn precipitate (any shade of brown) (III) hydroxide / ferric hydroxide $_{3}$ + 3NaOH \rightarrow Fe(OH) ₃ + 3NaCI e^{3+} + 3OH ⁻ \rightarrow Fe (OH) ₃	(1) (1) (1)
	(b)	blue copp deep [Cu(l	precipitate per(II) hydroxide p blue solution NH ₃) ₄ (H ₂ O) ₂] ²⁺	(1) (1) (1) (1)
	(c)	(gree copp CuC(en solid) turns black ber(II) oxide $D_3 \rightarrow CuO + CO_2$	(1) (1) (1)
			Total 1	0 marks
2.	(a)	(i) (ii)	correct bond pairs shown other electrons correct (<i>dependent on the first mark</i>) correct 3-D shape (independent) correct bond pairs shown other electrons correct (<i>dependent on the first mark</i>) correct shape (independent)	(1) (1) (1) (1) (1) (1)
	(b)	(i) (ii) (iii)	Proton Neutron number of outer electrons equals group number (also allow number of electron shells equals period number) Example relating to group or period as appropriate	(1) (1) (1) (1)
			Total 1	0 marks
3.	(a)		M _r of A is 86	(1)
	(b)		Heat (catalyst of) concentrated sulphuric acid	(1) (1)
	(c)	(i) (ii)	A and B turns limewater Milky	(1) (1) (1)
	(d)	(i) (ii) (iii) (iv)	A and C double bond or C=C (not saturated) addition reaction $CH_3CH=CHCOOH + Br_2 \rightarrow CH_3CHBrCHBrCOOH$	(1) (1) (1) (1)

(ii) double bond or C=C (not saturated) (iii) addition reaction (iv) $CH_3CH=CHCOOH + Br_2 \rightarrow CH_3CHBrCHBrCOOH$ Or

CH ₃ CH=CHCH ₂ OH	+ $Br_2 \rightarrow$	CH ₃ CHBrCHBrCH ₂ OH	

Total 10 marks

4.	(a)	add b no re brom brom red-b iodin brom Br ₂ +	promine water to (aqueous) NaCl action / solution is yellow (or orange) ine cannot displace chlorine / bromine is less reactive ine water + (aqueous) Nal prown solution / black precipitate e displaced / formed ine more reactive than iodine $\sim 2KI \rightarrow 2KBr + I_2$	 (1) (1) (1) (1) (1) (1) (1) (1)
	(b)	NaCl Nal(a	(aq) - white precipitate q) - yellow precipitate Total 10 m	(1) (1) parks
5.	(a)	(i) (ii)	decrease in number of moles / volume when methanol formed disadvantage: more expensive (plant) / increased maintenance	(1) (1)
			costs / not explosions	

(b)	(i) (ii) (iii)	exothermic / heat energy evolved low temp. is better since reaction is exothermic (400 ⁰ C used because) reaction is slow at low temp/ to increase rate <i>Mark dependent on correct answer to (ii)</i>	(1) (1) (1)
(c)		acts as a catalyst speeds up the reaction / increases rate of reaction	(1) (1)
(d)		28 g of CO \rightarrow 32 g methanol <i>(correct molecular masses)</i> 1:1 ratio recognised / mole calculation 16 kg	(1) (1) (1)

Total 10 marks

SECTION A TOTAL: 50 MARKS

SECTION B

6.	(a)	(i)	Mix NaOH + HNO ₃ / sodium hydroxide + nitric acid named indicator with colour change / pH meter shows 7 method used that avoids contamination by indicator Heat to reduce volume of solvent Leave to cool NaOH + HNO ₃ \rightarrow NaNO ₃ + H ₂ O	(1) (1) (1) (1) (1) (1)
				(6)
		(ii)	iron + chlorine chlorine is dry chlorine is passed over heated iron FeCl ₃ sublimes suitable apparatus including collection vessel Equation	(1) (1) (1) (1) (1) (1)
				(6)
		(iii)	copper(II) oxide + dilute sulphuric acid / CuO + H_2SO_4 add <u>excess</u> copper oxide and filter Heat Heat to reduce volume of solvent Leave to cool CuO + $H_2SO_4 \rightarrow CuSO_4 + H_2O$	(1) (1) (1) (1) (1) (1)
				(6)
	(b)	(i)	M _r (MgSO ₄ .H ₂ O) = 138 24/138 x 100 % Mg = 17.4 (If M _r taken as 122 ecf answer is 19.67 %)	(1) (1) (1)
				(3)
		(ii)	dissolve in water add BaCl ₂ (solution)/ Ba(NO ₃) (solution) Add hydrochloric acid / nitric acid white ppt. / white solid (If H ₂ SO ₄ used to acidify, allow first mark only)	(1) (1) (1) (1)
				(4)

Total 25 marks

7.	(a)	simil	larities: fizz/bubble/effervescence/vigorous reaction -)		
			melt	any three	(3)	
			eventually dissolve			
		lf ind	dicator added form alkaline solutions)	(1)	
		equation: formulae				
		oque	balance		(1)	
		both	have 1 electron in outer shell / Na = 2,8,1 & K = 2,8,8	3,1	(1)	
		reac	tivity increases down group		(1)	
		from	ns get bigger / more electron snells / outer electron it	irtner	(1)	
		outer electron less attracted / lost more easily				
					(10)	
	(b)	(i)	no reaction		(1)	
		(ii) r c 2	rubidium nitrite		(1)	
			$2RbNO_3 \rightarrow 2RbNO_2 + O_2$		(1)	
					(4)	
	(c)	(i)	$2CI^{-} - 2e \rightarrow CI_{2}$		(1)	
			chlorine <u>bleaches</u> litmus		(1)	
		(ii)	$2H^+$ + $2e \rightarrow H_2$		(1)	
			H ⁺ discharged leaving OH ⁻ (from water)	1	(1)	
			$[2H_2O + 2e \rightarrow H_2 + 2OH \text{ can score 1st and 3nd} OH^{-1}$ ions turn litmus blue / alkali formed	i marksj	(1)	
			bubbles of gas		(1)	
		(111)	sodium hydroxide		(1)	
		(11)	making soap, etc.		(1)	
					(0)	
					(0)	
	(d)	porf	form flomo tost		(1)	
		vello	orm name test ow - sodium		(1)	
		Ílac - potassium		(1)		
					(3)	
				Total 25 r	narke	
				10101231	11a1 K3	

8.	(a)	fractional distillation vaporise sample Mixture / compounds separate according to their b.pts. low b.pt. compounds collected at top of column first / high b.pt. compounds collected at bottom of column	(1) (1) (1) (1)
			(4)
	(b)	cracking high temperature (accept 400 - 900 °C) Long molecules / long chain hydrocarbons break down / C-C bonds break	(1) (1) (1)
		small <u>alkanes</u> formed	(1)
		unsaturated molecules used for plastics manufacture / formation of	(1) (1)
		petrol $C_6H_{14} \rightarrow C_2H_4 + C_4H_{10}$ or $2 C_2H_4 + C_2H_6$	(1)
			(7)
	(c)	ethene + steam heat / 250-500 °C pressure / 50-100 atm	(1) (1) (1)
		equation using <u>displayed</u> formulae	(1) (1)
		one advantage: continuous, pure product, fast reaction one disadvantage: uses non-renewable starting material	(1) (1)
			(7)
	(d)	addition polymerisation repeating unit of poly(ethene)	
			(2)
	(e)	(i) moles: $C = 38.7/12$ H = 9.7 O = 51.6/16 3.225 : 9.7 : 3.225 1 : 3 :1	(1) (1) (1)
		empirical formula = CH_3O (ii) $M_r = 3.1/0.05 = 62$ molecular formula = $C_2H_6O_2$	(1) (1)

(5)

Total 25 marks

9.	(a)	diamond: each carbon atom has 4 covalent bonds / tetrahedral	(1)
		all bonds are strong (covalent) bonds graphite: layer structure	(1) (1)
		layers slide over each other	(1) (1)
			(5)
	(b)	metals have delocalised electrons (not free)	(1)
		in solid state, ions are fixed in position (in a lattice)	(1)
		in molten NaCl, ions are mobile ions carry the current	(1) (1)
			(5)
	(C)	MgO is ionic	(1)
		attract each other strongly (dependent on previous mark) H ₂ O is covalent	(1) (1) (1)
		consists of molecules weak attractions between molecules / weak intermolecular forces (dependent on previous mark)	(1) (1)
		more heat / energy needed to separate ions than molecules	(1)
			(7)
	(d)	argon has 8 electrons in outer shell / full outer shell / 2,8,8	(1)
		nitrogen has a triple covalent bond (or diagram)	(1)
		this requires high energy to break	(1)
			(4)
	(e)	two isomers different structural formulae / arrangement of atoms / structures	(1)
		isomer 1 displayed / structural formula	(1)
		isomer 2 displayed / structural formula CH ₂ CICH ₂ CI CH ₃ CHCI ₂	(1)

(4)

Total 25 marks