UNIT 8 Acids, Bases and Salts (including Qualitative Analysis)

Recommended Prior Knowledge It is suggested that this unit is taught later in the course. The unit assumes that students can confidently handle complex practical procedures, write full and ionic equations and carry out calculations using ideas about amount of substance. It is essential that Units 1, 2 and 5 are studied prior to Unit 8. It is recommended that Unit 6 is taught before Unit 8 to give the students practice with practical techniques.

Context This unit contains a substantial quantity of learning objectives that are regularly assessed as part of both theory and practical components. The unit contains the more complex inorganic chemistry in the course. The reaction of acids and carbonates is commonly used to teach Speed of Reaction (Unit 7). There are strong links between the two units.

Outline Students study the reactions of acids and the preparation and analysis of metal salts. This unit has an extensive practical component. Student should carry out as many of the reactions as possible in the laboratory. More able pupils should use this unit to consolidate their learning about equations, calculations, volumetric analysis and ionic bonding. Reactions of acids are accessible to all pupils. Less able pupils should use this unit in preparation for the practical component of the examination by focusing on techniques for salt preparation and analysis. Two industrial processes are studied. These can be taught anywhere in the unit.

Summary of learning Outcomes **Suggested Teaching Activities** Further teacher guidance **Online resources** (see syllabus for full detail) Characteristic Properties of Acids and 7.1 Students can test a range of laboratory If available, students can be acids and alkalis, including weak acids Bases shown other methods of www.chemsoc.org/networks/l (e.g. ethanoic acid) and weak alkalis (e.g. earnnet/classic exp.htm measuring pH e.g. using pH а describe acids and alkalis in terms of the ions they contain and how they affect aqueous sodium carbonate) using meters, pH probes or a pH Look at experiments 10, 38. Universal Indicator paper Universal Indicator paper and/or solution. probe attached to a data logger. Issues to discuss b describe how to test hydrogen ion An interesting extension is to test include the increased www.wpbschoolhouse.btinter net.co.uk/page10/page10.ht concentration using Universal Indicator 'everyday' substances e.g. fruits, milk, accuracy and convenience of paper and the pH scale toothpaste, skin etc. and find their pH. using electronic methods of Click on 'Types of chemical measuring pH in the describe the difference between strong workplace and industry. reactions' 'Acids. Bases...' d Students should be able to discriminate and weak acids (extent of ionisation) between a strong and weak acid by using Universal Indicator or by considering the This links to work in Unit 10 http://antoine.frostburg.edu/c hem/senese/101/acidbase/in different rates of reaction with the relating to the properties of substances named below. ethanoic acid. dicators.shtml www.lhs.berkeley.edu/Chem Mystery/#indicator describe the characteristic properties of Students have already met С These reactions can be carried our as acids (reactions with metals, bases and the reactions of dilute acids student experiments. Main ideas that

	carbonates)	should be emphasised include:	with metals in Unit 6.	www.wpbschoolhouse.btinter
		 equations for the reactions (include 		net.co.uk/page10/page10.ht
g	describe the properties of bases	state symbols)	Students should carry out at	m
	(reactions with acids and ammonium	trends in reactivity of the metals	least one of each type of	Click on 'Reactivity of Metals'
	salts) – note that an alkali is a soluble	gas tests for hydrogen and carbon	reaction.	
	base	dioxide		
		 change in pH during the reactions 	This links directly with '7.2	
		temperature changes in the reactions	Preparation of Salts', '1.1	
		(an opportunity to revise exothermic	Experimental Design and	
		reactions)	holow It is yory important	
		• practise choosing reagents to make a	that these techniques are	
		named salt.	practised alongside the	
		practising techniques named in	teaching of these reactions.	
_	departies neutralization on the reaction	Sections 1.1, 1.2 and 7.2 (see below)		
e	between bydrogen and bydrovide ions to	during Unit 5. The emphasis this time	to teach volumetric analysis	www.chemsoc.org/petworks/l
	produce water	should be on titration followed by partial	using an acid-base titration	earnnet/classic_exp.htm
		evaporation and crystallisation as a method	(Syllabus learning outcome	Look at experiments 45, 48.
		of preparing a soluble salt.	3(j), Unit 5)	60.
		Students could make an ammonium salt	Students may note the	
		such as ammonium nitrate or ammonium	exothermic nature of	
		sulphate to show how artificial fertilisers are	neutralisation by using a	
		made. This links to 7.3 below.	thermometer to monitor	
			temperature changes during	
			the reaction (Syllabus	
f	know how acid soils are treated with	Students can discuss reasons why calcium	This can be taught in the	
	calcium hydroxide	hydroxide is chosen to use on soil issues	context of the effect of	www.chemsoc.org/networks/l
		to discuss include the treatment of soil or	calcium hydroxide on	earnnet/classic_exp_htm
		lakes in areas where rain water is polluted	ammonium salts (7.3 below)	Look at experiment 91.
		and acidic.		· ·
				http://ltpwww.gsfc.nasa.gov/g
				lobe/soil_pH/plant_pH.htm
h	classify oxides as acidic, basic or	This should be linked to the Periodic Table.	This is an opportunity to	
	amphoteric, based on metallic/non-	Students can test the pH of some soluble	revise metallic and non-	www.chemsoc.org/networks/l
	metallic character	oxides (e.g. calcium oxide, and bubbling	metallic elements related to	earnnet/classic_exp.htm
		carbon dioxide through Universal Indicator	their positions on the	Look at experiment 21.

		solution) and should practise predicting the character of an oxide from the position of an element in the Periodic Table.	Periodic Table (Syllabus learning outcome 8.1 (e), Unit 2). Acidic oxides were met in Atmosphere and Environment, Unit 4	
7.2 a	Preparation of Salts describe techniques used to prepare, separate and purify salts including titration precipitation reactions of acids with metals, insoluble bases and carbonates	This section is commonly assessed via the Practical/Alternative to Practical paper (Paper 4). Students should refer to past papers to practise the range of common tasks. One approach is to ask students to research and devise their own method for making a pamed path. Section 7.1 above	This should be taught parallel to 1.2 below. More able students should calculate a theoretical yield and an experimental percentage yield (Syllabus learning objective 3 (k), Unit	www.chemsoc.org/networks/l earnnet/classic_exp.htm Look at experiments 47, 48.
с	common salts (see syllabus for full list) suggest a method for preparing a given salt	can be used to teach the techniques needed in preparation for the investigation. Students will need to choose a method based on the solubility of the salt and sequence the techniques involved.	5). Each working group can enter their yield on the board for a discussion relating to how to increase yields. This can be linked to the economic importance of high yields in industry.	
1.1 a	Experimental Design name appropriate apparatus for the measurement of mass and volume including burettes, pipettes and measuring cylinders	This should be taught alongside 7.1 and 7.2 above. See past papers of Paper 4 for practise.		http://www.btinternet.com/~c hemistry.diagrams/miscellan eous.htm
1.2 a	Methods of purification describe methods of purification by the use of a solvent, filtration and crystallisation revise the fact that the measurement of purity in everyday substances (e.g. drugs, foodstuffs) is important	This should be taught alongside 7.1 and 7.2 above. See past examples of Paper 4 for practise.	This can be used to revise ideas about tests for purity, Syllabus learning outcome 1.2 (e) from Unit 1	www.chemsoc.org/networks/l earnnet/classic_exp.htm Look at experiments 1, 99.
1.3 a	Identification of ions and gases describe the use of aqueous sodium hydroxide to identify the cations named in syllabus section 1.3(a).	 Students need to be familiar with the methods of carrying out these tests. Students should carry out the experiments and focus on learning to recall how to carry out each test. 	See Practical/ Alternative to Practical past papers for guidance on how to set out the recording and processing of results.	http://www.crocodile- clips.com/absorb/AC4/m3.ht m go to 'water' and click on

b	describe tests to identify the anions as described in syllabus section 1.3(b).	 write an equation for each reaction knowing how to test for any gas evolved (Syllabus learning outcome 1.3(c)) recall the outcomes of the cation tests. being able to record their observations and conclusions systematically being able to identify a salt by combining the results of the cation and anion tests. 		 'view unit' for 'qualitative analysis' www.wpbschoolhouse.btinter net.co.uk/page10/page10.ht m Click on ''Chemical tests' www.chemsoc.org/networks/l earnnet/classic_exp.htm Look at experiment 80.
7.3 a,c	Properties and uses of ammonia describe the manufacture of ammonia by the Haber process – NB. The sources of nitrogen and hydrogen for the process.	This should be taught alongside 6.3 below. Students should be familiar with the yield against temperature/pressure graph and be able to discuss optimum conditions in terms of yield and rate. There is an opportunity to discuss the issue of the economic and environmental need for fuel and energy conservation in industry.	Stress the importance of iron as a transition metal catalyst to reinforce syllabus learning objectives 8.3(b) (properties of transition metals) and 6.1 (b) (catalysts and speed of reaction) An interesting extension is for students to research the life of Fritz Haber.	www.chemsoc.org/networks/l earnnet/classic_exp.htm Look at experiment 49.
6.3 a,b	Reversible reactions describe the idea that some reactions are reversible and reach dynamic equilibrium predict the effect of changing conditions on reversible reactions	This should be taught in the context of the manufacture of ammonia, 7.3 above. Students should be familiar with the symbol for reversible reactions. These ideas can be revisited in the study of sulphuric acid manufacture (below)	It is also important that students practise predicting the effect on yield of changing conditions of temperature and pressure by looking at equations for unfamiliar reactions and considering the molar volumes of gases involved and the value of ΔH	www.wpbschoolhouse.btinter net.co.uk/page10/page10.ht m Click on 'Reversible Reactions and Ammonia Synthesis'
7.3 d e	describe the use of nitrogenous fertilisers in promoting plant yield and growth compare nitrogen content of salts in fertilisers by calculation of percentage masses	Students are not expected to know details of the role of nitrogen in the growth of plants. One approach is to look at labels of fertiliser bags. Students can identify the compounds used and calculate the percentage nitrogen in each compound.	This links to calculations based on relative molecular masses first met in Unit 5.	http://www.ukagriculture.com /uk_farming/crops/fertilising crops.html

f	describe eutrophication and water pollution problems caused by nitrates leaching and explain how high solubility increases these problems	One approach is to summarise eutrophication using a flow chart. It is important to focus on the chemical process of solubility causing leaching and give only a brief outline of the subsequent biological processes that occur in the river.	Water pollution was introduced in Unit 4.	www.wpbschoolhouse.btinter net.co.uk/page10/page10.ht m Click on 'Reversible Reactions' for information on eutrophication.
g	describe the displacement of ammonia from its salts and explain why adding calcium hydroxide to soil causes loss of nitrogen from added fertiliser.	Students can heat ammonium salts with solid calcium hydroxide in test tubes. Use damp Universal Indicator paper to test for ammonia evolved. This also works with proteins e.g. hair, nail clippings.		
7.4 a	Sulphuric acid describe the manufacture of sulphuric acid	Use fertilisers – ammonium sulphate - as the link to this section	Stress the importance of vanadium(V) oxide as a transition metal compound catalyst to reinforce syllabus	www.wpbschoolhouse.btinter net.co.uk/page10/page10.ht
b	state the use of sulphur dioxide as a bleach and food preservative	 sulphuric acid with emphasis on a summary of the main reactions (e.g. using a flow chart) 	learning objectives 8.3(b) (properties of transition metals) and 6.1 (b) (catalysts	Click on 'Extra Industrial Chemisty'
C	(manufacture of fertilisers, detergents, battery acid)	 equations, including state symbols for each reaction considering the reversible nature of the reaction to form sulphur trioxide (see 6.3 above) the large scale importance of sulphuric acid with reference to its uses. 	This is an opportunity to teach the gas test for sulphur dioxide (Syllabus learning outcome 1.3(c))	