UNIT 5 Amount of substance

Recommended Prior Knowledge Unit 1. This unit is best taught towards the middle of the course when students have become familiar with using formulae and equations.

Context The skills taught in this unit are necessary for all other units. It is strongly suggested that ideas about symbols, equations and calculations are taught using an integrated approach through all other units. This unit should link together and revise ideas that have been introduced in earlier units. Unit 5 should be taught before Unit 6 and Unit 7.

Outline The unit contains skills of using calculations to calculate amounts of substances, including volumes of gases, in chemical reactions. These calculations are useful in handling data throughout the course. Volumetric analysis is routinely assessed in the practical component of the examination.

	Summary of learning Outcomes	Suggested Teaching Activities	Further teacher guidance	Online resources
	(see syllabus for full detail)			
3	Formulae, Stoichiometry and the mole	It is strongly suggested that these ideas are	Students can be given a	
а	concept	taught using an integrated approach across	copy of the Periodic Table	www.wpbschoolhouse.btinter
b	Know the symbols and formulae of	the syllabus. It is expected that	(use Appendix 2 of the	net.co.uk/page10/page10.ht
С	elements and compounds named in the	examination candidates will be able to	syllabus) and a list of	<u>m</u>
d	syllabus.	write, interpret and use formulae and	guidance notes for writing	Click on 'Elements,
	Deduce formulae of compounds	equations fluently across all units.	symbols and formulae, and	Compounds, Mixtures'
	Interpret and construct chemical equations		for writing and balancing	
	(including ionic equations and state	It is suggested that the use of symbols is	equations.	WWW.S-
	symbols)	introduced in Unit 1, with the teaching of		cool.co.uk/contents.asp
		atomic structure. The use of equations and	These notes can be stuck in	click on 'GCSE revision' then
		formulae can be introduced in Unit 2 in the	the front cover of their books	'Chemistry' then choose
		context of the Periodic Table and reactions	 – or in a prominent section of 	topic: 'Writing formulae and
		of Groups I and VII. There are	their files - so that they can	balancing equations'. Use
		opportunities to teach and practise ionic	refer to them during the	the 'Quick learn' section.
		equations in displacement reactions (Group	course.	
		VII [introductory work in Unit 2] and		
		metals[Unit 6]) and in electrolysis [Unit 9].		
е	Define relative atomic mass, A _r	It is suggested that this is covered in Units		
		1 and 3.		www.chemsoc.org/networks/l
f	define and calculate relative molecular			earnnet/classic_exp.htm
	mass, M _r .	Students should be able to work out		Look at experiment 5
		relative molecular masses using formulae		
		of compounds and by referring to the		
		Periodic Table.		www.wpbschoolhouse.btinter

A list of mathematical requirements for candidates is available under Appendix 1 of the syllabus.

www.xtremepapers.net

g		Students should be able to calculate the % by mass of an element in a compound.	Fertilisers are useful examples for this type of calculation.	net.co.uk/page10/page10.ht m Click on 'Chemical Calculations'
h	calculate empirical and molecular formulae	Suggested experiment: Heating magnesium to form magnesium oxide and working out its formula. Students should understand, with reference to structures met in Units 2 and 4, such as polyethene, sodium chloride and silicon dioxide, that some formulae represent simple ratios. Suitable molecules for illustrating empirical formulae include hydrocarbons (alkanes and alkenes), phosphorus oxides and polymers.	See Appendix 1 of the current syllabus for advice about mathematical requirements. This experiment is useful in terms of processing a class set of results using a spreadsheet such as Excel and plotting the graph.	www.chemsoc.org/networks/l earnnet/classic_exp.htm Look at experiments 61, 67, 90
1	calculate reacting masses and volumes of gases using the mole concept	Students should practise working out reacting masses on both an experimental scale, using grams, and an industrial scale, using tonnes. Less able students can work out reacting masses from ratios of masses in the equation without learning about molar amounts. Students can be given a set of rules for guidance to carry out these calculations. These can be stuck in the back cover of their books for reference – or in a prominent section of their files - during later Units.	These skills should be practised in the context of the later units of the course. It is common for examination questions to test calculation skills in the context of other syllabus areas. Suitable contexts for practising calculations include reaction rates, acids, bases and salts, metal reactions and extraction and organic chemistry.	www.chemsoc.org/networks/l earnnet/classic_exp.htm Look at experiment 68 www.wpbschoolhouse.btinter net.co.uk/page10/page10.ht m Click on 'Chemical Calculations' http://www.boc.com/educatio n/formulae_/formula.html
j	process results of volumetric experiments using the concept of solution concentration	 Suggested experiments: Acid-base titrations e.g. dilute hydrochloric or sulphuric acid with aqueous sodium hydroxide. Potassium manganate(VII) titrations. 	Use past practical (or alternative to practical) papers for examples of common volumetric calculations.	www.chemsoc.org/networks/l earnnet/classic_exp.htm Look at experiments 8, 45, 48, 5

www.xtremepapers.net

		Students should practise calculating concentrations from titres and equations.	It is important that the techniques of rough and accurate titres are practised to prepare for the practical paper.	
k	calculate percentage yield and purity.	Students need to be able to identify the limiting factor that determines the maximum yield. Suggested experiments: Determination of percentage yield: Preparation of copper sulphate from an excess of copper carbonate and a known volume of sulphuric acid. Purity: Determination of the copper carbonate content of a weighed sample of malachite by reaction with sulphuric acid. The calculation can either be based on the dried residue waste, or on a back- calculation from the mass of copper sulphate produced (this will need heating and drying to the anhydrous form).	Again, use past practical papers for examples of this type of calculation. Alternatively, this can be taught as an integral part of the preparation of salts in Unit 8 or the amount of metals in ores in Unit 6.	

www.xtremepapers.net