CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge Ordinary Level

MARK SCHEME for the October/November 2014 series

5070 CHEMISTRY

5070/22

Paper 22 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge O Level – October/November 2014	5070	22
A1 (a) (i)	S/sulfur/P/phosphorus (1)		[1]
(ii)	Fe/iron (1)		[1]
(iii)	P/phosphorus (1)		[1]
(iv)	Zn/zinc/As/arsenic (1)		[1]
(v)	Fe/iron (1)		[1]
(vi)	$H/hydrogen/H_2/N/nitrogen/N_2$ (1)		[1]
(b) (i)	$4As + 3O_2 \rightarrow 2As_2O_3(1)$		[1]
(ii)	(arsenous acid) has a lower concentration of hydrogen ions/hydroc acid has higher concentration of hydrogen ions (1)	hloric	
	less frequent collisions (between ions in arsenous acid)/more frequ collisions (between ions) in hydrochloric acid (1)	lent	[2]
			[Total: 9]

Mark Scheme	Syllabus	Paper
Cambridge O Level – October/November 2014	5070	22
(density generally) increases down the group (1)		[1]
allow between 710 – 860 (°C) (1) (actual value = 760 °C)		[1]
liquid (no mark on its own) melting point is below 35(°C) AND boiling point is above 35(°C) (1)		[1]
more reactive down the group/less reactive up the group (1)		[1]
$2Rb + 2H_2O \rightarrow 2RbOH + H_2(1)$		[1]
reaction which releases heat/releases energy/products have lower than reactants/reaction in which ΔH is negative/temperature (of surroundings) increases (1)	energy	[1]
$H^{-} + H_2O \rightarrow OH^{-} + H_2(1)$		[1]
sodium has low density/nickel has high density (1)		
sodium has low melting point / nickel has high melting point/sodium boiling point/nickel has high boiling point (1)	has low	[2]
reactions e.g. cyclohexane from benzene/sorbitol from glucose/am nitro-compounds/amines from nitriles/alkanes from alkenes/alkane	ines from	[1]
idea of disruption of layers in metallic structure/layers cannot slide a easily (1)	as	
NOTE: there MUST be some idea of layers / rows or sheets sliding r atoms sliding	not just	[2]
		[Total: 12]
	Cambridge O Level – October/November 2014 (density generally) increases down the group (1) allow between 710 – 860 (°C) (1) (actual value = 760 °C) liquid (no mark on its own) melting point is below 35 (°C) AND boiling point is above 35 (°C) (1) more reactive down the group/less reactive up the group (1) 2Rb + 2H ₂ O \rightarrow 2RbOH + H ₂ (1) reaction which releases heat/releases energy/products have lower than reactants/reaction in which ΔH is negative/temperature (of surroundings) increases (1) H ⁻ + H ₂ O \rightarrow OH ⁻ + H ₂ (1) sodium has low density/nickel has high density (1) sodium has low melting point / nickel has high melting point/sodium boiling point/nickel has high boiling point (1) any suitable use e.g. manufacture of margarine/other stated hydrog reactions e.g. cyclohexane from benzene/sorbitol from glucose/am nitro-compounds/amines from nitriles/alkanes from alkenes/alkane alkynes (1) nickel ions are different size to copper ions (1) idea of disruption of layers in metallic structure/layers cannot slide a easily (1) NOTE: there MUST be some idea of layers/rows or sheets sliding r	Cambridge O Level – October/November 20145070(density generally) increases down the group (1)allow between 710 – 860 (°C) (1) (actual value = 760 °C)liquid (no mark on its own) melting point is below 35 (°C) AND boiling point is above 35 (°C) (1)more reactive down the group/less reactive up the group (1)2Rb + 2H ₂ O \rightarrow 2RbOH + H ₂ (1)reaction which releases heat/releases energy/products have lower energy than reactants/reaction in which ΔH is negative/temperature (of surroundings) increases (1)H ⁻ + H ₂ O \rightarrow OH ⁻ + H ₂ (1)sodium has low density/nickel has high density (1)sodium has low melting point / nickel has high melting point/sodium has low boiling point (1)any suitable use e.g. manufacture of margarine/other stated hydrogenation reactions e.g. cyclohexane from herzene/sorbitol from glucose/amines from nitro-compounds/amines from nitriles/alkanes from alkenes/alkanes from alkynes (1)nickel ions are different size to copper ions (1)idea of disruption of layers in metallic structure/layers cannot slide as easily (1)NOTE: there MUST be some idea of layers/rows or sheets sliding not just atoms sliding

Page	4	Mark Scheme Cambridge O Level – October/November 2014	Syllabus 5070	Paper 22
A3 (a)	wat	er and salts have different boiling points (1)		
	wat	er evaporates AND salts/residues/impurities/solids left in flask (1)		
	wat	er condenses/turns to liquid in the condenser (1)		[3]
(b)) (i)	Mg ²⁺ and C <i>l</i> ⁻ (1) IGNORE: state symbols		[1]
	(ii)	0.0265/0.027/0.03 (mol/dm ³) (1)		[1]
	(iii)	white precipitate/white solid formed/white deposit formed (1)		[1]
(c)	96 g	$g SO_4^{2-} \rightarrow 233 g BaSO_4 (1)$		
	1.24	$4 \text{g SO}_4^{2-} \rightarrow \frac{233}{96} \times 1.24 \text{ OR } 3.0096/3.01 \text{g BaSO}_4 (1)$		
	ma	ss in 50 cm ³ = 3.01 × $\frac{50.0}{1000}$ = 0.151 g (1)		
	OR	(for 1 st two steps)		
	mol	les $SO_4^{2-} = \frac{1.24}{96}$ OR 0.0129 (1)		
	ma	ss of BaSO ₄ = 0.0129×233 OR $3.01g$ (1)		
	OR			
	ma	ss of SO ₄ ²⁻ in 50 cm ³ = 1.24 × $\frac{50}{1000}$ OR 0.062 g (1)		
	mol	les SO ₄ ²⁻ = $\frac{0.062}{96}$ OR 0.000645833 mol (1)		
	ma	ss BaSO ₄ = $0.000646 \times 233 = 0.151 g(1)$		[3]
				[Total: 9]

Pa	ge (5		Syllabus	Paper
			Cambridge O Level – October/November 2014	5070	22
A4	(a)	H⁺	$+ OH^{-} \rightarrow H_2O(1)$		[1]
	(b)	(i)	20 (cm ³)/0.02 dm ³ (1)		[1]
		(ii)	mol KOH = $0.15 \times \frac{45}{1000}$ OR $6.75 \times 10^{-3}/0.00675$ (1)		
			mol $H_2SO_4 = 0.003375/0.0034(1)$		
			concentration = 0.003375 × $\frac{1000}{20}$ = 0.17/0.169 (1)		[3]
	(c)	(i)	of acid/ethanoic acid is monobasic/ H_2SO_4 is dibasic/ethanoic acid acidic hydrogen (ion)/sulfuric acid has 2 acidic H^+ ions/ethanoic acid	has one	
			half as much ionisable hydrogen (1)		[1]
		(ii)	any value between 3 and 6.9 inclusive (1)		[1]
	(d)	(i)	ANY TWO FROM		
			• sulfur dioxide/SO ₂ (1)		
			 (sulfur dioxide) oxidised further/(sulfur dioxide) reacts further to f sulfur trioxide (1) 	form	
			 oxidation product reacts with water to form sulfuric acid/SO₃ read water to form sulfuric acid (1) 	cts with	[2]
		(ii)	irritates skin/irritates eyes/irritates nose/irritates mouth (1)		[1]
					[Total: 10]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge O Level – October/November 2014	5070	22
45 (a)	sodium barium magnesium nickel copper (1)		[1
(b)		rodes (1)	[
	(ii) iron and silver (1)		[
(c)	ANY TWO FROM		
	 the zinc corrodes instead of the iron/zinc reacts instead of the iron zinc is more reactive (than iron)/zinc is more reactive (than steel)/reactivity series (than steel/iron) OR reverse argument (1) the zinc loses electrons in preference to the iron (1) 	()	the
	IGNORE: sacrificial protection without qualification		[

[2]

[Total: 5]

Page 7		Mark Scheme	Syllabus	Paper		
		Cambridge O Level – October/November 2014	5070	22		
B6	(a)	sodium chloride is giant ionic structure/has a continuous structure of io lattice (1)	ons/ions in			
		strong (attractive) forces between the ions/lot of energy needed to brea	ak ionic bon	d (1)		
		chlorine is a (simple) molecule/chlorine has simple covalent structure (1)				
		chlorine has weak forces between the molecules/small amount of energy required to separate molecules/not much energy needed to break intermolecular forces/chlorine has weak van der Waals' forces (1)				
	(b)	 in molten sodium chloride <u>ions</u> can move but ions can't move in solid/<u>ions</u> can only move in molten sodium chloride (1) 				
	(c)	c) sodium ion 2, 8 and + charge (1) chloride ion 2, 8, 8 and – charge (1)				
	(d)	at the negative electrode/cathode reduction takes place which is gain o (by sodium) (1)	of electrons			
		at the positive electrode/anode oxidation takes place which is loss of e (by chloride) (1)	electrons			
		OR				
		sodium <u>ions</u> are reduced because they gain electrons (1)				
		chloride ions are is oxidised because they lose electrons (1)				
		OR				
		sodium is reduced because oxidation number of sodium decreases (1)				
		chloride/chlorine is oxidised because the oxidation number of chlorine	increases (1) [2]		
	(e)	$2NH_3 + 3Cl_2 \rightarrow N_2 + 6HCl(1)$		[1]		
		[Total: 1				
				-		

Pa	age 8	3	Mark Scheme	Syllabus	Paper
			Cambridge O Level – October/November 2014	5070	22
B7	(a)	alk	enes (1)		[1]
	(b)	me	lting points increase (1)		
		les	rease in melting point from even number to odd number of carbon at s than from odd to even number/the increase is less for some atoms ers/any reference to the regular zigzag nature of the increase (1)		[2]
	(c)	C ₉ ŀ	H ₂₀ (1)		[1]
	(d)	(i)	$C_{11}H_{24} \rightarrow C_{2}H_{4} + C_{3}H_{6} + C_{6}H_{14} (1)$		[1]
		(ii)	ANY TWO FROM		
			 (hydrocarbons with) longer chains not in high demand/more lo chains produced than used/shorter chains in more demand/fe chains produced than used (1) so (more) petrol/gasoline is made (1) to produce alkenes/to make ethane (1) 	-	[2]
	(e)	(1)	16 g methane \rightarrow 27 g HCN (1) 500 g methane \rightarrow 500 $\times \frac{27}{16} \times \frac{65}{100} = 548$ g (1)		
			OR		
			$\frac{500}{16}$ = 31.25 mol methane (1)		
			$31.25 \times 27 \times \frac{65}{100} = 548 g (1)$		[2]
		(ii)	$Ca(OH)_2 + 2HCN \rightarrow Ca(CN)_2 + 2H_2O(1)$		[1]
					[Total: 10]

Pa	ige 9)	Mark Scheme	Syllabus	Paper
			Cambridge O Level – October/November 2014	5070	22
B8	(a)	(i)	concentration of ethanoate = 0.45 mol/dm ³ (1) mass = 0.45 × 59 × $\frac{200}{1000}$ = 5.31/5.3g (1)		[2]
		(ii)	$\frac{0.17}{300} = 5.67 \times 10^{-4} / 5.7 \times 10^{-4} (\text{mol/dm}^3/\text{s}) (1)$		[1]
	((iii)	rate of reaction decreases with time/reaction slows down (1) concentration (of H^+ ions) decreases/concentration (of reactants) decreases/concentration (of ethyl ethanoate) decreases (1) collision frequency reduced (1)		[3]
	(b)	cor	^{t⁺} (aq) + 2OH⁻(aq) → Fe(OH)₂(s) rect formulae (1) rect state symbols (dependent on correct formulae) (1)		[2]
	(c)	filte	r (off iron) (1)		
		wat cry: AN	at filtrate to crystallisation point then leave to crystallise/evaporate of ter from filtrate then leave to crystallise/partially evaporate filtrate an stallise D crystals with filter paper (1)		ie [2]

[Total: 10]

Pa	age 1	0 Mark Scheme	Syllabus	Paper
		Cambridge O Level – October/November 2014	5070	22
B9	(a)	decreases with increase in temperature (1) reaction is exothermic/increasing temperature favours reaction which a	bsorbs	
		heat (1)		[2]
	(b)	increases with increasing pressure (1)		
		increasing pressure causes reaction to go in direction of decreasing numerical moles/smaller volume (1)	mber of	[2]
	(c)	ANY ONE FROM		
		 low(er) temperature makes reaction rate too slow (1) high(er) temperature decreases percentage yield (1) 		
		 low(er) temperature increases percentage yield (1) this temperature (i.e. 350–450) gives a (relatively) high rate and low 	v yield (1)	
		ANY ONE FROM		
		 low(er) pressure gives poor yield (1) high(er) pressure increases yield (1) high(er) pressure expends too much energy (1) high a pressure too expensive (1) 		
		 high(er) pressure gives a higher rate (1) 		
		 high pressure a safety risk (1) this pressure (i.e. 200–300) gives a high yield and high rate (1) 		[2]
	(d)	speeds up the reaction/lowers the activation energy (1)		
		lowers energy costs/less energy used (1)		[2]
	(e)	molar mass of $(NH_4)_3PO_4 = 149 (1)$		
		$\frac{42}{149} \times 100 = 28.19\%/28.2\% (1)$		[2]
				[Total: 10]