CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the October/November 2013 series

5070 CHEMISTRY

5070/22

Paper 2 (Theory), maximum raw mark 75

MMM. HITEINED abers. com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page	2	Mark Scheme	Syllabus	Paper							
			GCE O LEVEL – October/November 2013	5070	22							
A1	(a) o	xygen	/ O ₂ (1)		[1]							
	(b) n	ickel / Ni (1)										
	(c) s) sulfur / S (1)										
	(d) p	(d) potassium / K (1)										
	(e) si	ilver / /	Ag (1)		[1]							
	(f) zi	inc / Z	n (1)		[1]							
					[Total: 6]							
A2	(a) (i	,	creases as number of carbon atoms increases / incre ms decreases (1)	ases as number of								
	(ii		anoic (acid) (1)		[1]							
	(iii	-	rect formula for propanoic acid showing all atoms an	d all bonds (1)	[']							
	(11)	y 001	H H O									
			H H U H - C - C - C - O - H									
		I			[1]							
					[1]							
	(b) (i	i) C ₅ ł	H ₁₀ O ₂ (1)		[1]							
	(ii	i) any	y value between and including 180–195°C (1)		[1]							
	(c) (i	i) Hv	drogen (1)									
	(0) (LOW: H_2		[1]							
	(ii	i) C ₃ ł	H_7CO_2Na / $C_4H_7O_2Na$ / correct displayed or structural	formula (1)	[1]							
	(d) (i	i) spe	eeds up reaction (rate) / reaction faster (1)									
			vers activation energy/makes reaction go by different vers energy barrier (1)	route using less e	nergy / [2]							
	(ii	i) sol	vent / fragrance / perfume / food additive / flavourings	s / polyesters / tery	rlene (1) [1]							
	(iii	i) pro	pyl methanoate (1)		[1]							
					[Total: 11]							

	Page 3		GCE O LE	Syllabus 5070	Paper 22				
A3	(a)	2,8	,4 (1)						[1]
	(b)				r	r	1		
		iso	otope		²⁸ Si	³⁰ Si	-		
		nu	ımber	of protons	14	14	(1)		
		nu	number of electrons		14	14	(1)		
		nu	number of neutrons			16	(1)		
									[3]
	(c)	Si +	+ 2Cl₂	$\underline{e} \rightarrow \operatorname{SiC} l_4(1)$					[1]
	(d)	(i)	does	s not conduct e	lectricit	y / doe	s not conduct heat (1)		
			liquio	d (at room tem	peratur	e) / low	melting point / low boi	ling point (1)	[2]
		(ii)	bond	ling pair betwe	en eac	h of the	e 4 Si and C <i>l</i> atoms (1)		
		. ,		of structure co			. ,		
				ORE: inner she		-	· · /		[2]
	(e)	many (strong) bonds / many (covalent) bonds / lattice / giant structure / lattice of covalent bonds (1)						of	
		a lot of energy needed to break the <u>bonds</u> / high temperature needed to break the <u>bonds</u> / strong <u>bonds</u> (1)						the [2]	
									[Total: 11]
Α4	а	 combustion of named fossil full decomposition 			ic matt carbon Jel (1) of carb g tempe	er / dec (comp onates erature	composition of organism ounds)/combustion of f s/decomposition of lime of the oceans / remova	fossil fuel / combus estone (1)	
		(ii)			orhed I		ans/absorbed by seas	(1)	[1]
		(יי)	priot	ooynaloolo/dDe		Jy 0000	and absorbed by seas	('/	[']
	(b)	(i)					ation) / gas which abso gas which absorbs hea) (1) [1]

	Page 4			Mark Scheme	Syllabus	Paper			
				GCE O LEVEL – October/November 2013	5070	22			
		(ii)		e: methane/other named greenhouse gas (1) OW: CFCs/nitrous oxide					
			dige ALL dige	hane) from swamps / rice paddy fields / gas from wastion / termites / wetlands (1) OW: (for methane) bacterial action (unqualified) / fra stion (unqualified) / permafrost / glaciers / landfill 'E: 2nd mark for source is dependent on the correct	acking / animal	ľ	2]		
			NOT		guo	Ľ	-1		
	(c)	(i) (acid which is) incompletely ionised (in water) / (acid which is) partly dissociated / (acid which is) incompletely dissociated (in water) (1)							
		(ii)	add	universal / full range indicator (1)					
			com	pare the colour with (colour on) indicator colour cha	rt (1)	[2	2]		
	<i>.</i>								
	(d)	cor	rect fo	$D_3 \rightarrow Na_2CO_3 + CO_2 + H_2O$ prmulae (1)					
		cor	rect b	alance (1)		[2	2]		
						[Total: 11	1]		
A5	(a)	Mg	+ 2H	$Cl \rightarrow MgCl_2 + H_2$ (1)		[′	1]		
	(b)	(i)		a labelled correctly with appropriate units e.g. volume in seconds/s on horizontal axis (1)	e in cm ³ on vertica	al axis and			
			then	h rising steadily from near 0–0 point (although 0 doe either levelling off horizontally or rising with decreas hed (1)		not yet	2]		
		(ii)	initia AND	I gradient less steep from the start					
			reac	tion finishing at same volume of gas as original or st y to finish at the same volume as line A (1)	till below original l		1]		
	(c)			ass of MgC ₂ = 48 (1) 50% (1)					
		1 mark for ecf from wrong molar mass of magnesium carbide							
						[Total: 6	6]		

	P۵	ge 5	Mark Scheme	Syllabus	Paper					
	. a	960	GCE O LEVEL – October/November 20		22					
B6	(a)		harks for the reactions at the anode and cathode: bde reaction: $2O^{2-} \rightarrow O_2 + 4e^- / 2O^{2-} - 4e^- \rightarrow O_2$ (1)						
		cat	hode reaction: $Al^{3+} + 3e^- \rightarrow Al / Al^{3+} \rightarrow Al - 3e^-$ (1))						
		me AN	/ one of: cryolite increases conductivity of aluminium oxide electrolyte mixture (1) graphite electrode(s) / carbon electrode(s) (1) any temperature between and including 900–1200	/ cryolite helps in disso)°C quoted (1)						
		•	at anode carbon + oxygen \rightarrow carbon dioxide (in w	ords or equation) (1)	[4]					
	(b)	(i)	low density (1)		[1]					
		(ii)	(good) <u>electrical</u> conductor (1) ACCEPT: has mobile electrons		[1]					
	(c)	(i)	has an oxide layer (1)							
			kide (layer) is unreactive / oxide (layer) 'sticks' strongly to the surface If the aluminium) / oxide is non-porous (1)							
		(ii)	displacement / redox (1)	[1]						
		(iii)	Al ₂ (SO ₄) ₃ (1)		[1]					
					[Total: 10]					
B7	(a)	(un	saturated): has (carbon-carbon) double bond (1)							
			drocarbon): contains carbon and hydrogen only / harbon and hydrogen (1)	an [2]						
	(b)	(i)	high temperature / values between and including	400–500 °C (1)						
			catalyst/aluminium oxide / zeolites / silicon dioxide	alyst/aluminium oxide / zeolites / silicon dioxide (1)						
		(ii)	$C_{14}H_{30} \rightarrow C_2H_4 + C_{12}H_{26}$ (1)		[1]					
	(c)	(i)	cling film/ bottles / bags / packaging / sandwich ba proofing / toys / jugs / plates / dustbins / water pip pipes / bubble wrap / cable coverings / pond lining paints / glues / waxes / (outdoor) furniture e.g. tab	es / screw closures / sa s / ropes / nets / green	icks / gas					

(ii) C_2H_5 $| / C_2H_5CH=CH_2$ (1) $CH=CH_2$ [1]

	Page 6							ark Sc				040		Sylla			Pape	r
	(d)	d) 28 g ethene							Der/N	loven	1ber 2	013		507	0		22	
	(u)	0.4 to	0.4 tonnes gives 0.4 × 46/28 OR 0.657 / 0.66 (tonnes) (1) ALLOW: ecf from incorrect molar masses															
		(0.657 × 5/100) = 0.03 / 0.033 / 0.0329 (tonnes) (1) ALLOW: ecf from step 2 i.e. for x answer in step 2 by 5/100											[3]					
		[Total: 1																
B8	(a)	to rea	acta ants	ants / s anc	react I prod	ion is	rever	rsible	(1)					-	oducts ants ar			
		OR rate o	of fo	orwar	d rea	ction	= rate	e of ba	ickwa	rd rea	ction =	= 2 ma	arks					[2]
	(b)	(i) r	nol	HI =	0.94	x 50/	1000	OR 0.	047 n	nol (1))							
		r	mas	s HI	= 0.0	47 x ⁻	128 =	6/6.	0/6.0	02 / 6.	016 (g) (1)						[2]
		(ii) At 25 °C high <u>er</u> concentration of reactant / low <u>er</u> concentration of products / At 450 °C low <u>er</u> concentration of reactant / high <u>er</u> concentration of products / decrease in temperature shifts reaction to the left / increase in temperature shifts reaction to right / concentration of reactant increases as temperature decreases / concentration of products increases as temperature increases (1)																
		r	eac	ction	is end	lother	mic (1)										[2]
	(c)	label	led p	prod	ucts /	H ₂ +	I_2 on	right a	and al	bove t	he rea	ctants	s (1)					
		entha	alpy	' chai	nge sl	hown	as up	oward	pointi	ing ar	row wi	th ∆ <i>H</i>	or 'e	nthalp	y chan	ge' (1)	[2]
	(d)	add ((aqu	leous	s) silv	er nitr	ate /	lead n	itrate	(1)								
		yello	w pr	recip	itate (1)												[2]
																	[Tota	al: 10]
B9	(a)	/ to ir	ncre	ase	the yie	eld / t		ke mo	•	-		-			increa amino		•	[1]
	(b)	$2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4 (1)$ [1]									[1]							

Page 7	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	5070	22
(c) (i) OH⁻	(1)		[1]
(ii) amr	nonia is produced / NH_3 produced (1)		
amr	nonia lost to the air / ammonia is a gas (1)		[2]
. ,	= 0.01 × 4/1000 OR 4 × 10 ⁻⁵ (1) OH) ₂ = 2 × 10 ⁻⁵ / half answer to mol HC l (1)		
concentr	ration of Ca(OH) ₂ = (2 × 10 ⁻⁵ × 1000 / 10) = 2 × 10 ⁻³ mol / dm ³ (1)		[3]
(e) heat solu	ution to crystallisation point / leave in a warm place	/ partially evapora	te solution (1)

filter (off crystals) / pick out crystals **AND** dry crystals with filter paper (1)

[2]

[Total: 10]