www. trenepapers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

5070 CHEMISTRY

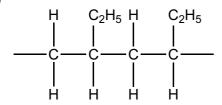
5070/22

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.


Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Mark Scheme: Teachers' version	Syllabus	Paper
				GCE O LEVEL – May/June 2012	5070	22
A 1	(a)	¹⁷ ₈ C)			[1]
	(b)	³⁹ K	C ⁺ / ²⁴ ₁₂	Mg ²⁺		[1]
	(c)	¹⁴ C	;			[1]
	(d)	¹⁴ C	; / ¹⁶ C) ²⁻		[1]
	(e)	²⁰ N	le			[1]
	(f)	⁴⁰ ₂₀ C	Са			[1]
						[Total: 6]
A2	(a)	(i)	Zinc	hydroxide / Zn(OH) ₂		[1]
		(ii)	Corr	(aq) + 2OH⁻(aq) → Zn(OH)₂(s) (1) rect balanced equation (1) rect state symbols – dependent on correct formulae	(1)	[2]
	(b)			/ Zn (1) nitrate / Zn(NO ₃) ₂ (1)		[2]
	(c)	(i)		s of sample = 4.21 g (1) 46 (1)		[2]
		(ii)	Mole NO ₂	e ratio nitrogen oxygen = 0.0914 : 0.183 (1) (1)		[2]
						[Total: 9]
А3	(a)	Any • •	Save Redu Redu	es (finite) resources / need to extract metals decreas es energy / less energy to recycle (than to extract fro uces disposal problems / less landfill uces mining / less scarring of landscape (due to min	om ore);	
		• • Allo		litter er toxic gases / fewer harmful gases eforestation / less (heavy) metal pollution / less dum	nped	[2]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2012	5070	22

(b)

Correct structure (2 marks)

[2]

Allow: single repeating unit with continuation bonds with brackets and n

Allow: multiple units e.g. 4 or 6

- (c) Any two from
 - Causes litter / unsightly;
 - Fills up land-fill sites / need land-fill sites
 - Incineration produces toxic gases / burning makes carbon monoxide / burning makes (more) carbon dioxide / incineration (of polymer) increases global warming;
 - Wastes a finite resource / waste fossil fuels;
 - Blocks drains / blocks water flow / harms fishes / sea animals e.g. turtles choke on it [2] **Allow:** incineration produces harmful gases
- (d) (i) Condensation [1]
 - (ii) Correct amide linkage [1]

O H
| |
| |
Allow: -C-N- between each box

(iii) Fats / lipids: [1]
Allow: oils

(e) (i) SiO₂ [1]

(ii) Many (covalent) bonds / (covalent) giant structure / macromolecule / all atoms joined together (1)

Takes a lot of energy to break <u>bonds</u> / hard to break <u>bonds</u> / high temperature needed to break <u>bonds</u> / <u>bonds</u> are strong (1) [2]

(iii) No free electrons / no delocalised electrons / no sea of electrons / all electrons in covalent bonds / electrons cannot move [1]

[Total: 13]

4 (a) (i)
$$N_2 + O_2 \rightarrow 2NO$$
 [1]

(ii)
$$2NO + O_2 \rightarrow 2NO_2$$
 (1) [1]

(b)
$$2NO_2 + H_2O \rightarrow HNO_3 + HNO_2$$
 [1]

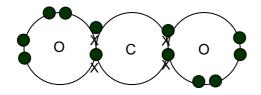
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2012	5070	22

(c) (i) Carbon dioxide / CO₂ (1)

[1]

(ii) Calcium nitrate (1) $Ca(NO_3)_2$ (1)

[2]


Allow: Calcium nitrite / Calcium nitrate(III) (1) Ca(NO₂)₂ (1)

(d) Any two from

- Seawater is cheap(er):
- Seawater removes more of the pollutant gases / seawater more effective at removing pollutant gases
- Seawater does not involve landscape destruction / no mining involved
- doesn't produce carbon dioxide / doesn't increase global warming
- seawater is readily available / seawater is abundant

[2]

(e)

[1]

[Total: 9]

(b)
$$2KOH + H_2SO_4 \rightarrow K_2SO_4 + 2H_2O$$
 [1]
Allow: $KOH + H_2SO_4 \rightarrow KHSO_4 + H_2O$

(c) (i)
$$30.0 \,\mathrm{cm}^3 \,/\, 30 \,\mathrm{cm}^3$$
 [1]

(ii) Moles of acid = 0.00125 (1) Moles of KOH = 0.00250 (1) [KOH] = 0.0833 / 0.083 / 0.08 (1)

Allow ecf from wrong moles of KOH and/or wrong volume of KOH from part (c)(i) [3]

(d) Any one difference (1)

Correct explanation of that difference (1) e.g.

Graph will start above pH 1.2 / higher starting pH (1) because ethanoic acid is a weak acid (1)

OR

Neutralisation volume will be 15.0 cm³ (1) because ethanoic acid reacts in a 1:1 mole ratio (1) **OR**

Vertical section of graph will be a smaller (1) because ethanoic acid is a weak acid (1) [2]

[Total: 8]

Page 5		ge 5	Mark Scheme: Teachers' version Syl	Syllabus	Paper		
	-		GCE O LEVEL – May/June 2012	5070	22		
В6	(a)		(Reaction that) releases heat / (reaction that) releases energy Allow: energy given out is greater than energy absorbed / reaction mixture gets hot				
	(b)	Bond breaking takes in energy and bond forming releases energy (1) More energy is released than taken in (1) [2]					
		Allow: b negative	Allow: bond breaking is endothermic and bond making is exothermic / enthalpy change is				
	(c)	OR	on that volumes of gases are proportional to the nu f hydrogen = 83.3) moles of oxygen = 41.7 / 41.65				
		•	,	(1)			
		Volume o	of oxygen = 1000 dm ³ (1)		[2]		
	(d)	•	nation involves reduction since electrons are gaine ectrons / oxygen is reduced because its oxidation no	, ,			
			equation involves oxidation since electrons are lost ectrons / hydrogen is oxidised because its oxidation	• •			
	(e)		nydrocarbons (1) thane / propane / alkanes / methane + steam / nap racking	htha	[1]		
	(f)		ge – directly converts chemical energy into electric o pollutants / doesn't release harmful gases / uses		•••		
		pressuris	ntage – storage problems associated with hydroger sed tanks needed / pollution problems on disposa nufacturing fuel cells (1)				
					[Total: 10]		
В7	(a)	0.71 g Allow: 0	.709 / 0.704 g		[1]		
	(b)	Copper ((carbonate)		[1]		
	(c)	Allow: d	ferent amounts in moles ifferent atomic masses of the metal / different mole n each compound is different	cular masses of co	[1] mpound / % of		
	(d)		ium ions with Ca^{2+} and 2.8.8 as drawn or as numbe e ion with O^{2-} and 2.8 as drawn or as numbers (1)	ers (1)	[2]		

-	. 3- \	GCE O LEVEL – May/June 2012	5070	22
	(ii)	Reacts with sand to make slag / reacts with silicon dic removes silicon dioxide as slag (1)	oxide to make ca	alcium silicate / [1]
(e)	(i)	$CO_3^{2^-} + H^+ \rightarrow HCO_3^-$ OR $CO_3^{2^-} + 2H^+ \rightarrow CO_2 + H_2O$ (1)		[1]
	(ii)	Add excess copper(II) carbonate to hydrochloric acid (1)		
	(''')	Filter (1)		
		Evaporate the filtrate partially / evaporate to crystallisation Allow: leave to crystallise	n point (1)	[3]
				[Total: 10]
B8 (a)	Co	rrect structure showing all atoms and bonds (1)		
- (-,	Co	ntains a (carbon-carbon) double bond (1) s carbon and hydrogen only (1)		[3]
	110	o carbon and nyarogon <u>omy</u> (1)		[~]
(b)) Iso	omer (1)		[1]
(0)		LL (4)		[4]
(C)	C ₁₀	₀ H ₂₀ (1)		[1]
(d)) Me	elting point decreases and increases / melting point is irregu	ular down the se	ries
		טוו iling point increases all the time / boiling point increases reנָ	gularly / shows a	trend [1]
(0)	. Ca	s because beiling point is lower than room temperature / b	oiling point is 6	.00
(e)) Ga	s because boiling point is lower than room temperature / b	olling point is – c	5 °C [1]
(f)	C ₁₆	$_{5}H_{34} \rightarrow 3C_{4}H_{8} + C_{4}H_{10} (1)$		[1]
(g)) (i)	$C_4H_8Br_2$ (1)		[1]
	(ii)	Butan-1-ol / butan-2-ol / butanol		[1]
				[Total: 10]
B9 (a)	Re	action is faster because particles are moving faster / partic	les have more e	nergy (1)
		ore energetic collisions / more effective collisions / more potthe activation energy / more successful collisions (1)	articles have en	ergy above that [2]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 6

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2012	5070	22

(b) Position of equilibrium shifts to the left / shift backwards / shifts towards the reactants / back reaction favoured (1)

More moles (of gas) on the left hand side / 4 moles on the left and 2 on the right / greater volume (of gas) on left / more molecules on left (1) [2]

(d)
$$2CH_3OH + 3O_2 \rightarrow 2CO_2 + 4H_2O$$
 [1]

(e) (i) potassium dichromate / potassium manganate(VII) / potassium permanganate / potassium manganate (1)

heat / warm / boil / reflux (1) [2]

(ii) HCO₂H (1) Allow: HCOOH / displayed formula

[1]

[Total: 10]