MARK SCHEME for the October/November 2011 question paper

www.tiremepapers.com

for the guidance of teachers

5070 CHEMISTRY

5070/21

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Mark Scheme: Teachers' version Syllabus		Paper
				GGE O LEVEL - October/November 2011	5070	21
A 4	(-)	I¢	الم من	Section A		
A 1	(a)	SUITL	ir aic	oxide (1)		[1]
	(b)	pota	issiur	m manganate(VII) (1)		[1]
	(c)	silve	er nitr	rate (1)		[1]
	(d)	nitro	gen	dioxide (1)		[1]
	(e)	Meth	nane	(1)		[1]
						[Total: 5]
A2	(a)	C ₂ H	₄O (1	1)		[1]
	(b)	struc	cture	shown or written as 2,8,2 (1)		[1]
	(c)	(i)	any floats bubb goes gets yello IGN	two of: s/moves over surface (1) bles/effervescence (1) s into a ball/melts (1) smaller/eventually forms a colourless solution (1) bw/orange flame (1) ORE dissolves		[2]
		(ii)	2Na(corre bala corre	(s) + $2H_2O(I) \rightarrow 2NaOH(aq) + H_2(g)$ ect formulae for reactants and products (1) ncing (dependent on correct formulae) (1) ect state symbols (dependent on correct products and	reactants) (1)	
	(d)	(i)	iron point	has higher melting point/sodium has lower melting po t and sodium low (1)	oint/iron has high	melting [1]
		(ii)	iron Iow (has higher density/sodium has lower density/iron has (1)	high density and	l sodium [1]
						[Total: 9]

	Page 3			Mark Scheme: Teachers' version	Syllabus	Paper		
				GCE O LEVEL – October/November 2011	5070	21		
A3	3 (a) (i) losi the ALI is tl ALI IGN iod		losin their ALL(is the ALL(IGN(iodin	g electrons (to from iodine)/oxidation number goes oxidation number/removing oxygen from hydrogen pe OW incorrect decreases or increases in oxidation num e correct direction OW H ₂ O ₂ is reduced/H ₂ O ₂ gains electrons ORE statements repeating what is in the equation e	actrons (to from iodine)/oxidation number goes from -1 to 0/increasing ation number/removing oxygen from hydrogen peroxide (1) acorrect decreases or increases in oxidation number providing the change ect direction I_2O_2 is reduced/ H_2O_2 gains electrons statements repeating what is in the equation e.g. iodide ions goes to			
		(ii)	coloi ALL(urless to brown (1) OW yellow/orange-brown/straw coloured		[1]		
	(b)	pota sulfi	assiur uric a	m iodide: increase in concentration increases rate (1) icid: no effect (1)		[2]		
	(c)) any two of: particles moving slower at lower temperature or have less energy/ORA (1) collisions less effective at lower temperature/collisions less successful at temperature/ORA (1) collisions less frequent at lower temperature/ORA (1) fewer particles have energy greater than activation energy (1)				at lower [2]		
	(d)	prot elec neut	ons = trons trons	= 53 5 = 54 = 74				
		all 3 1 or	corr 2 co	ect (2) rrect (1)		[2]		
						[Total: 8]		

	Pa	ge 4		Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE O LEVEL – October/November 2011	5070	21	
A4	(a)	(i)	chro ALL(origin pigm (colc All m	matography <u>paper</u> dipping in <u>labelled</u> solvent (1) OW named solvents e.g. propanone/alcohol/water n line marked <u>above the solvent level</u> (1) nent spot on origin line at start and then separat bured) spots (1) narks can be obtained by writing or from a diagram	es into more t	han one [3]	
		(ii)	run c if chi has s	chromatogram with known sample <u>and</u> the brown solut lorophyll present it will go up the paper same distanc same R _f value (1)	ion/mixture (1) e as the known	sample/ [2]	
	(b)	(i)	carb	bon dioxide (+ water \rightarrow) glucose (+ oxygen) (1)		[1]	
		(ii)	2H ₂ 0 corre bala	$D - 2e^- \rightarrow 2H^+ + O_2/2H_2O \rightarrow 2H^+ + O_2 + 2e^-$ ect formulae (including electron) (1) ncing (1)		[2]	
	(c)	(i)	cont	ains (C=C) double bonds/can add more hydrogen (1)		[1]	
		(ii)	brom IGN(nine decolourises/goes colourless (1) ORE: goes clear/colour fades/discolourises		[1]	
	(d)	(i)	C _n H ₂	_{2n} (1)		[1]	
		(ii)	full s Must ALL(structure of but-1-ene or but-2-ene drawn (1) t show all the atoms and all the bonds OW structure of 2 -methylpropene		[1]	
		(iii)	add ALL(NOT	steam/water above 100°C (1) OW hydrated above 100°C reference to hydrolysis			
			catal ALL0	lyst/phosphoric acid (1) OW H₃PO₄/H₂SO₄/H⁺		[2]	
						[Total: 14]	

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2011	5070	21

A5 (a) (i) Positive ions in regular layers (1) positive ions can be shown as circles with + or labelled as ions NOT atoms electrons shown interspersed between the ions (1) electrons can be shown in diagram as e⁻/e or – or dots labelled electron [2]

- (ii) malleable: idea of layers sliding when force applied (1) conducts: electrons can move/the sea of electrons/the delocalised electrons/free electrons (1)
- (b) no free electrons/no mobile electrons/all electrons involved in bonding/no delocalised electrons/no sea of electrons (1) strong bonding throughout the whole structure/covalent bonding throughout the whole structure/idea of many strong bonds (1) NOT ionic bonds
- (c) PdCl₂(1)
- (d) in solid ions not free to move (1) when molten ions free to move (1) ALLOW ions only free to move when molten (2)

[2]

[1]

[Total: 9]

© University of Cambridge International Examinations 2011

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2011	5070	21

Section B

B6	(a)	do titration with (indicator) to find end point/do titration (with indicator) to find volume of acid or alkali needed to neutralise (1) titrate again without indicator using same volume as before (1) evaporate solution to crystallisation point/leave to form crystals (1) filter off crystals/pick out crystals and dry with filter paper (1)	[4]
	(b)	moles NaOH = $1.6 \times \frac{25}{1000}$ /0.04 mol (1) moles hydrates sodium sulfate = $\frac{0.04}{2}$ /0.02 (1) molar mass of sodium sulfate calculated = 322 (1) mass sodium sulfate = $0.02 \times 322 = 6.44g$ (1)	[4]
	(c)	Anhydrous copper sulfate/white copper sulfate (1) turns (from white) to blue (1) OR Anhydrous cobalt chloride/blue cobalt chloride (1) turns (from blue) to pink (1)	[2]

[Total: 10]

	Page 7			Mark Sch	neme: Teach	ers' version	Syllabus	Paper
				GCE O LEVE	L – October	November 2011	5070	21
B 7	(a)	alco	hol a	nd carboxylic acid	(1)			[1]
	(b)	prod bala	lucts ncinę	: HOCH₂COONa + g 2HOCH₂COOH a	$CO_2 + H_2O$ (and $2HOCH_2C$	1) COONa (1)		[2]
	(c)	oxyg ALL	gen h OW (as been removed oxidation number c	from oxalic a of carbon dec	cid/hydrogen has bee reases	en added to oxalio	acid (1) [1]
	(d)	(i)	conc mad (forn	lensation polyme e)/monomer does ned by condensatio	r because not have a on)/can be hy	water has been carbon-carbon doub drolysed (1)	removed (whe le bond/has este	en it is er linkage [1]
		(ii)	Poly	ester/named polye	ster (1)			[1]
	(e)	(i)	any less smal less fewe	two of: litter (1) ll mammals or birds landfill (1) ALLOW er poisonous fumes	s not trapped less or no la s since not bu	or harmed (1) nd pollution rnt (1)		[2]
		(ii)	any	suitable e.g. plastic	c bags (1)			[1]
		(iii)						
			ALLO	$\begin{array}{ccc} CH_3 & H \\ I & I \\ C & = & C \\ I & I \\ H & H \\ H & H \end{array}$ $DW \ CH_3 CH = CH_2$	(1)			[1] [Total: 10]
								-

Page 8			Mark Scheme: Teachers' version	Syllabus	llabus Paper				
			GCE O LEVEL – October/November 2011 5070						
(a)	(i)	amp reac	hoteric oxide because it react both with acids and base ts as both an acid and a base (1)	es/amphoteric b	ecause it [1]				
	(ii)	Al₂O ALL(H_3 + 2NaOH \rightarrow 2NaA lO_2 + H ₂ O (1) OW other equations making NaA $l(OH)_4$ or NaA $l(OH)_6$		[1]				
	(iii)	Filtra	ation (1)		[1]				
(b)	(i)	cath anoc corre	ode: $Al^{3+} + 3e^- \rightarrow Al(1)$ le: $2O^{2-} \rightarrow O_2 + 4e^-$ ect symbols and formulae including electron (1)						
		bala	ncing (1)		[3]				
	(ii)	to di	ssolve the aluminium oxide/to lower the melting point o	of the mixture (1) [1]				
(c)	(i)	Any alum IGN beca acid	two from: hinium (apparently) unreactive/does not corrode (1) ORE aluminium does not rust huse of oxide layer (1) in drink could react with iron/acid in drink doesn't reac	t with aluminium	ı (1) [2]				
	<i>(</i>)				[4]				
	(11)	mixti	ure of metals or a metal with a non-metal (1)		[1]				
					[Total: 10]				
(a)	(i)	0.2 >	< 24 = 4.8 dm ³ /4800 cm ³ (unit needed) (1)		[1]				
	(ii)	corre	ect 'dot-and-cross' diagram for HC <i>l</i> (1)		[1]				
(b)	CaF	2 + H	$H_2SO_4 \rightarrow CaSO_4 + 2HF$						
-	corr bala	ect fo Incin	ormulae (1) g (1)		[2]				
(c)	HCi pH I	is sti HC <i>l</i> =	rong and HF is weak(ish)/HC <i>l</i> is stronger than HF (1) <i>I</i> = 1 (allow 0-2) and HF = 3–6/HC <i>l</i> has a lower pH than	ALLOW ORA HF (1)					
	refe	rence	e to greater concentration of hydrogen ions in HC <i>l</i> tha	n in HF (1)	[2]				
(d)	(i)	incre decr	easing temperature: reaction goes to left/more reactant easing conc of HI: reaction to the right/more HI forme	ts (1) d (1)	[2]				
	(ii)	mas	ses: H_2 = 0.8 (2 × 0.4), I_2 = 19.2 (254 × 0.0756) and H	HI = 172.0 (128	× 1.344)				
		(1) % I ₂	= 19.2/(0.8 + 19.2 + 172) = 10 % (1)		[2]				
		-	. , , , , ,						
	Pa (a) (b) (c) (d)	Page 8 (a) (i) (ii) (iii) (iii) (b) (i) (c) (i) (a) (i) (ii) (c) HC1 pH I or (d) (i) (ii)	Page 8(a) (i) amp reac(ii) $A_{l_2}O$ ALLC(iii) Filtra(b) (i) cathe anoc corre balai(b) (i) cathe anoc corre balai(ii) to dia(ii) corre balancing(ii) CaF2 + H correct for balancing(b) CaF2 + H correct for balancing(c) HCl is str pH HCl = or reference(ii) mass (1) $\% I2$	Page 8 Mark Scheme: Teachers' version GCE O LEVEL – October/November 2011 (a) (i) amphoteric oxide because it react both with acids and base reacts as both an acid and a base (1) (ii) Al ₂ O ₃ + 2NaOH → 2NaA/O ₂ + H ₂ O (1) ALLOW other equations making NaAl(OH) ₄ or NaAl(OH) ₆ (iii) Filtration (1) (i) cathode: Al ³⁺ + 3e ⁻ → Al (1) anode: 2O ²⁻ → O ₂ + 4e ⁻ correct symbols and formulae including electron (1) balancing (1) (ii) to dissolve the aluminium oxide/to lower the melting point of correct symbols and formulae including electron (1) balancing (1) (ii) to dissolve the aluminium does not rust because of oxide layer (1) acid in drink could react with iron/acid in drink doesn't react (ii) mixture of metals or a metal with a non-metal (1) (a) (i) 0.2 × 24 = 4.8 dm ³ /4800 cm ³ (unit needed) (1) (ii) correct 'dot-and-cross' diagram for HCl (1) (b) CaF ₂ + H ₂ SO ₄ → CaSO ₄ + 2HF correct formulae (1) balancing (1) (c) HCl is strong and HF is weak(ish)/HCl is stronger than HF (1) A pH HCl = 1 (allow 0-2) and HF = 3-6/HCl has a lower pH than or reference to greater concentration of hydrogen ions in HCl that (d) (i) increasing temperature: reaction goes to left/more reactant decreasing conc of HI: reaction to the right/more HI forme (ii) masses: H ₂ = 0.8 (2 × 0.4), I ₂ = 19.2 (254 × 0.0756) and H (1) % I ₂ = 19.2/(0.8 + 19.2 + 172) = 10 % (1)	Page 8 Mark Scheme: Teachers' version Syllabus GCE 0 LEVEL - October/November 2011 5070 (a) (i) amphoteric oxide because it react both with acids and bases/amphoteric b reacts as both an acid and a base (1) (ii) Al ₂ O ₃ + 2NaOH → 2NaA/O ₂ + H ₂ O (1) ALLOW other equations making NaAl(OH) ₄ or NaAl(OH) ₆ (iii) ALLOW other equations making NaAl(OH) ₄ or NaAl(OH) ₆ (iii) (iii) Filtration (1) (i) cathode: Al ³⁺ + 3e ⁻ → Al (1) anode: 2O ²⁻ → O ₂ + 4e ⁻ correct symbols and formulae including electron (1) balancing (1) (i) to dissolve the aluminium oxide/to lower the melting point of the mixture (1 (c) (i) Any two from: aluminium (apparently) unreactive/does not corrode (1) IGNORE aluminium does not rust because of oxide layer (1) acid in drink could react with iron/acid in drink doesn't react with aluminium: (ii) 0.2 × 24 = 4.8 dm ³ /4800 cm ² (unit needed) (1) (ii) (iii) mixture of metals or a metal with a non-metal (1) (b) CaF ₂ + H ₂ SO ₄ → CaSO ₄ + 2HF correct formulae (1) balancing (1) (c) HC <i>I</i> is strong and HF is weak(ish)/HC <i>I</i> is stronger than HF (1) ALLOW ORA pH HC <i>I</i> = 1 (allow 0-2) and HF = 3-6/HC <i>I</i> has a lower pH than HF (1) or reference to greater concentration of hydrogen ions in HC <i>I</i> than in HF (1) (d) (i) increasing temperature: reaction goes to left/more reactants (1) decreasing conc of HI: reaction to the right/more HI formed (1) <				