

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CHEMISTRY 5070/12

May/June 2011 Paper 1 Multiple Choice

1 hour

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil (type B or HB recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.

Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

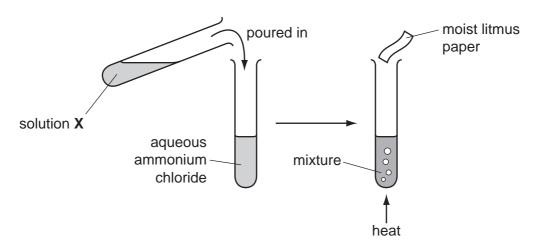
Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 16.

1 A drop of liquid bromine is placed in the bottom of a gas jar. Brown fumes of bromine vapour slowly spread through the covered gas jar.


Why does this happen?

- A Bromine vapour is less dense than air.
- **B** Bromine molecules and the molecules in air are always moving around.
- **C** Bromine molecules are smaller than the molecules in air.
- **D** Bromine molecules move faster than the molecules in air.
- **2** Copper(II) sulfate crystals are separated from sand using the four processes listed below.

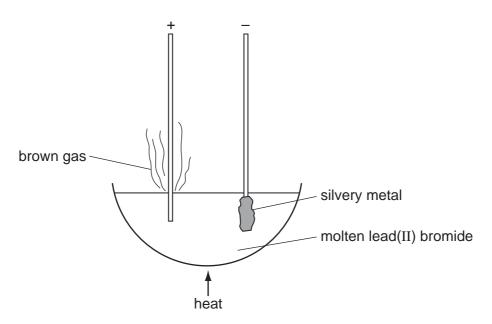
In which order are these processes used?

	1st	2nd	3rd	4th
Α	filtering	dissolving	crystallising	evaporating
В	filtering	dissolving	evaporating	crystallising
С	dissolving	evaporating	filtering	crystallising
D	dissolving	filtering	evaporating	crystallising

3 The diagrams show an experiment with aqueous ammonium chloride.

A gas, Y, is produced and the litmus paper changes colour.

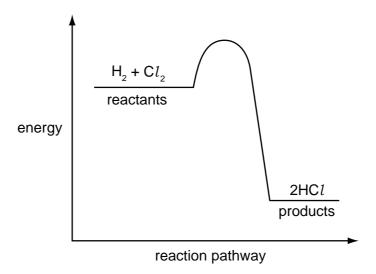
What are solution **X** and gas **Y**?


	solution X	gas Y
Α	aqueous sodium hydroxide	ammonia
В	aqueous sodium hydroxide	chlorine
С	dilute sulfuric acid	ammonia
D	dilute sulfuric acid	chlorine

4		student tested a cause the reager				•	drox	kide. A precipitate was not seen							
	Wh	at could not hav	e be	en present in the	e so	lution?									
	Α	A <i>l</i> ³⁺	В	Ca ²⁺	С	NH_4^+	D	Zn ²⁺							
5	In v	vhich of the follo	wing	is there a lattice	e of p	positive ions in a	'sea	a of electrons'?							
	Α	liquid potassiur	n ch	loride											
	В	sand													
	С	solid graphite													
	D	solid magnesiu	m												
6		at is the mass of lative atomic ma	_	•		g of pure water?									
	A	16 g	В	32g	С	64 g	D	70 g							
7	Αc	ovalent bond is t	orm	ed by											
	Α	electron sharing between metals and non-metals.													
	В	electron sharing	g be	tween non-meta	ls.										
	С	electron transfe	er be	tween non-meta	ls.										
	D	electron transfe	er fro	m metals to non	-me	tals.									
_															
8				•				covalent bonds?							
	Α	C ₂ H ₄	В	CO ₂	С	CH₃OH	D	N_2							
9	The	e equation for the	e rea	action between c	alciu	ım carbonate an	d hy	drochloric acid is shown.							
			CaC	CO ₃ (s) + 2HC <i>l</i> (ad	q) →	CaC l_2 (aq) + H_2	O(I)	+ CO ₂ (g)							
		w many moles cess of the acid?	of ca	lcium carbonate	will	give 24 cm ³ of o	carb	on dioxide when reacted with an							
	(As	sume one mole	of ca	arbon dioxide oc	cupi	es 24 dm³.)									
	Α	1 mol	В	0.1 mol	С	0.01 mol	D	0.001 mol							
10	Ele	ment X has the ϵ	elect	ronic structure 2	2,8,5	. Element Y has	the	electronic structure 2,8,7.							
	Wh	at is the likely fo	rmul	a of a compound	d coi	ntaining only X a	nd \	(?							
	Α	XY ₃	В	X_2Y_3	С	<i>X</i> ₃ Y	D	X_3Y_2							

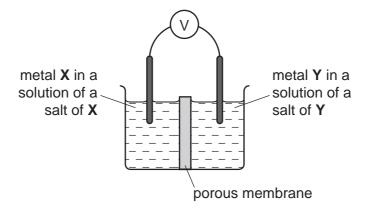
11 The empirical formula of a liquid compound is C₂H₄O.

To find the empirical formula, it is necessary to know the


- A density of the compound.
- **B** percentage composition of the compound.
- **C** relative molecular mass of the compound.
- **D** volume occupied by 1 mole of the compound.
- 12 Which statement about both chlorine atoms and chloride ions is correct?
 - **A** They are chemically identical.
 - **B** They are isotopes of chlorine.
 - **C** They have the same number of protons.
 - **D** They have the same physical properties.
- 13 The diagram shows the electrolysis of molten lead(II) bromide using inert electrodes.

What happens during this electrolysis?

- A Atoms change to ions.
- **B** Covalent bonds are broken.
- **C** lons change to atoms.
- **D** New compounds are formed.


14 The energy profile diagram for the reaction between hydrogen and chlorine is shown.

What information about this reaction does the diagram show?

	type of reaction	sign of enthalpy change, ΔH
Α	endothermic	negative
В	endothermic	positive
С	exothermic	negative
D	exothermic	positive

15 Which pair of metals **X** and **Y** will produce the highest voltage when used as electrodes in a simple cell?

	metal X	metal Y
Α	copper	silver
В	magnesium	silver
С	magnesium	zinc
D	zinc	copper

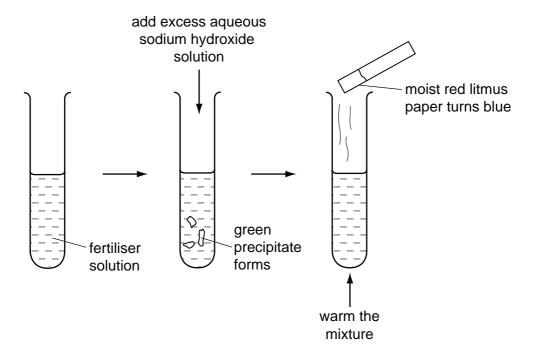
16 The equation shows what happens in a redox reaction between iron(II) chloride and chlorine gas.

$$2FeCl_2 + Cl_2 \rightarrow 2FeCl_3$$

Which equation describes the reduction process in this reaction?

- **A** $2Cl^- \rightarrow Cl_2 + 2e^-$
- **B** $Cl_2 + 2e^- \rightarrow 2Cl^-$
- **C** $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$
- **D** $Fe^{3+} + e^{-} \rightarrow Fe^{2+}$
- 17 Which acid and base react together to produce an insoluble salt?
 - A hydrochloric acid and sodium hydroxide
 - B nitric acid and calcium oxide
 - C sulfuric acid and barium hydroxide
 - D sulfuric acid and zinc oxide
- 18 Carbon and silicon are both in Group IV of the Periodic Table.

Which statement is correct for both carbon dioxide and silicon dioxide?

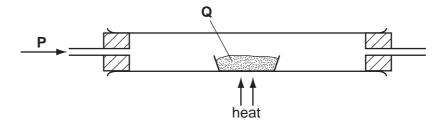

- A They are acidic oxides.
- **B** They are readily soluble in water.
- **C** They contain ionic bonds.
- **D** They have giant molecular structures.
- **19** The following changes could be made to the conditions in the reaction between zinc and hydrochloric acid.
 - 1 increase in concentration of the acid
 - 2 increase in particle size of the zinc
 - 3 increase in pressure on the system
 - 4 increase in temperature of the system

Which pair of changes will increase the rate of reaction?

- **A** 1 and 2
- **B** 1 and 4
- **C** 2 and 3
- **D** 3 and 4

© UCLES 2011

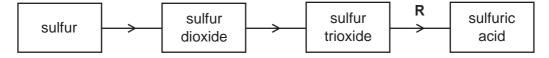
- 20 Which calcium compound does not increase the pH of acidic soils?
 - A calcium carbonate
 - B calcium hydroxide
 - C calcium oxide
 - **D** calcium sulfate
- 21 A solution of fertiliser was tested as shown.



Which ions must be present in the fertiliser?

- **A** Fe^{2+} and SO_4^{2-}
- **B** Fe^{3+} and NO_3^-
- **C** NH_4^+ and Fe^{2+}
- **D** NH_4^+ and NO_3^-
- 22 Which pair of properties are **both** correct for a typical transition element?

	property 1	property 2
Α	forms coloured compounds	soluble in water
В	high density	has variable oxidation states
С	low density	high melting point
D	low melting point	can act as a catalyst


- 23 What happens when zinc foil is placed in an aqueous solution of copper(II) sulfate?
 - A Copper(II) ions are oxidised.
 - **B** There is no reaction.
 - C Zinc atoms are oxidised.
 - **D** Zinc sulfate is precipitated.
- 24 Which deduction about the element astatine, At, can be made from its position in Group VII?
 - A It forms covalent compounds with sodium.
 - **B** It is a gas.
 - **C** It is displaced from aqueous potassium astatide, KAt, by chlorine.
 - **D** It is more reactive than iodine.
- 25 In the apparatus shown, gas P is passed over solid Q.

No reaction occurs if P and Q are

	Р	Q
Α	hydrogen	lead(II) oxide
В	hydrogen	magnesium oxide
С	oxygen	carbon
D	oxygen	sulfur

26 The diagram represents the manufacture of sulfuric acid by the Contact process.

What is used in step **R**?

- A concentrated sulfuric acid followed by water
- **B** vanadium(V) oxide
- C water followed by concentrated sulfuric acid
- **D** water only

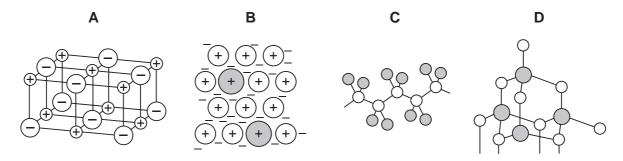
27 Aluminium is higher than copper in the reactivity series so the following displacement reaction should be feasible.

$$2Al(s) + 3CuSO_4(aq) \rightarrow Al_2(SO_4)_3(aq) + 3Cu(s)$$

The reaction does not take place at room temperature.

What is the reason for this?

- A Aluminium has an inert coating all over it.
- **B** The compound aluminium sulfate does not exist.
- **C** The reaction is exothermic.
- **D** The reaction needs to be warmed to take place.
- 28 Scrap iron is often recycled.


Which reason for recycling is **not** correct?

- **A** It reduces the amount of pollution at the site of the ore extraction.
- **B** It reduces the amount of waste taken to landfill sites.
- **C** It reduces the need to collect the scrap iron.
- **D** It saves natural resources.
- **29** The gases coming from a car's exhaust contain oxides of nitrogen.

How are these oxides formed?

- A Nitrogen reacts with carbon dioxide.
- **B** Nitrogen reacts with carbon monoxide.
- C Nitrogen reacts with oxygen.
- **D** Nitrogen reacts with petrol.
- **30** Which element can only be extracted from its ore using electrolysis?
 - A calcium
 - **B** copper
 - C lead
 - **D** silver

31 Which diagram represents the structure of an alloy?

- 32 When a volcano erupts, which gas is produced in significant amounts?
 - A carbon monoxide
 - **B** chlorofluorocarbons
 - C methane
 - **D** sulfur dioxide
- **33** Useful fractions are obtained by the fractional distillation of petroleum.

Which fraction is matched by its use?

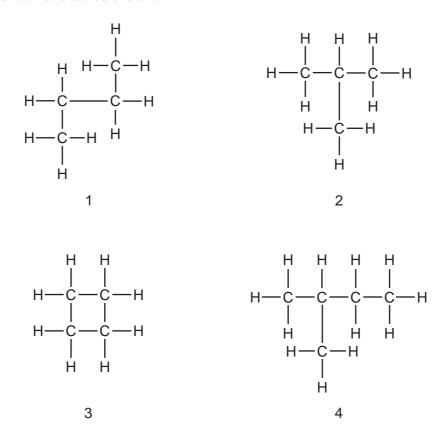
	fraction	use
Α	bitumen	fuel in cars
В	lubricating oils	for making waxes and polishes
С	paraffin (kerosene)	for making roads
D	petrol (gasolene)	aircraft fuel

34 Compounds X and Y are both alkanes. Compound X has a higher boiling point than compound Y.

What could be the formulae of compounds X and Y?

	compound X	compound Y
Α	C ₈ H ₁₆	C ₉ H ₁₈
В	C ₈ H ₁₈	C ₉ H ₂₀
С	C ₉ H ₁₈	C ₈ H ₁₆
D	C ₉ H ₂₀	C ₈ H ₁₈

35 Compound X is a hydrocarbon. It reacts with steam to form an alcohol.


Which type of compound is X and what would be its effect on bromine water?

	type of compound	effect on bromine water
Α	alkane	turns from brown to colourless
В	alkane	turns from colourless to brown
С	alkene	turns from brown to colourless
D	alkene	turns from colourless to brown

^^	14/1 1						- , ,	_
36	vvnich	bond is	present in	1 both	nvion	and	i erviene	!

- **A** C-O
- **B** C = O
- **C** N 0
- D N H
- 37 With which substance will ethene react to form more than one product?
 - A bromine
 - **B** hydrogen
 - **C** oxygen
 - **D** steam

38 Four hydrocarbon structures are shown.

Which hydrocarbons are isomers of each other?

A 1, 2 and 3

B 1, 2 and 4

C 1 and 2 only

D 3 and 4

39 When a compound X is reacted with sodium carbonate, carbon dioxide gas is evolved.

What could be the formula of compound X?

A $C_2H_5CO_2CH_3$ **B** $C_3H_7CO_2H$ **C** $CH_3CO_2C_2H_5$ **D** C_4H_9OH

40 Which statement about ethanoic acid is correct?

- It contains three carbon atoms per molecule.
- It contains five hydrogen atoms per molecule. В
- C It is insoluble in water.
- D It reacts with ethanol to form a sweet-smelling compound.

BLANK PAGE

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4	유	Helium 2	20	Ne	Neon 10	40	Ā	Argon 18	84	궃	Krypton 36	131	Xe	Xenon 54		Ru	Radon 86				175	Γ	Lutetium 71		בֿ	Lawrencium 103
	=>				19	ш	Fluorine 9	35.5	CI	Chlorine 17	80	Ā	Bromine 35	127	Ι	lodine 53		Ą	Astatine 85				173	Υb	Ytterbium 70		8	Nobelium 102
	5				16	0	Oxygen 8	32	တ		62	Se	Selenium 34	128	<u>e</u>	Tellurium 52		Ъ	_				169	Ę	Thulium 69		Md	Mendelevium 101
	>				41	z	Nitrogen 7	31	۵	Phosphorus 15	75	As	Arsenic 33	122		Antimony 51	509	ö	Bismuth 83				167	ш	Erbium 68		Fm	Fermium 100
	2				12	ပ	Carbon 6	28	Si	Silicon 14	73	ge	Germanium 32	119		Tin 50	207	Pb	Lead 82			•	165	운	Holmium 67		Es	Einsteinium 99
	≡				+	Δ	Boron 5		Νſ	Aluminium 13	20	Ga	Gallium 31	115	In	Indium 49	204	11	Thallium 81				162	ρ	Dysprosium 66		ర	Californium 98
											65	Zn	Zinc 30	112	ပ္ပ	Cadmium 48	201	Η̈́	Mercury 80				159	욘	Terbium 65		簽	Berkelium 97
											64	ى ت	Copper 29	108	Ag		197	Αn	Gold 79				157		Gadolinium 64			
Group											59	Z	Nickel 28	106	Pd	Palladium 46	195	Ŧ	Platinum 78				152	Eu	Europium 63		Am	Americium 95
Ğ											69	ပိ	Cobalt 27	103	Rh	Rhodium 45	192	I	Iridium 77				150	Sm	Samarium 62		Pu	Plutonium 94
		-	I	Hydrogen 1							99	Fe	Iron 26	101	Ru	Ruthenium 44	190	Os	Osmium 76					Pm	Promethium 61		ď	Neptunium 93
											55	M	Manganese 25		ပ	Technetium 43	186	Re	Rhenium 75				144	N	Neodymium 60	238	-	Uranium 92
											25	ပ်	Chromium 24	96	Mo	Molybdenum 42	184	≥	Tungsten 74				141	P	Praseodymium 59		Ра	Protactinium 91
											51	>	Vanadium 23	93	Q	Niobium 41	181	Та	Tantalum 73				140	ပီ	Cerium 58		Т	Thorium 90
											48	F	Titanium 22	91	Zr	Zirconium 40	178	Ξ	72							nic mass	lod	iic) number
											45	လွ	Scandium 21	89	>	Yttrium 39	139	La	Lanthanum 57 *	227	Ac	\$ 68	Springs	ocilics Pripo	2	a = relative atomic mass	X = atomic symbol	b = proton (atomic) number
	=				6	Be	Beryllium 4	24	Mg	Magnesium 12	40	Sa	Calcium 20	88	Š	Strontium 38	137	Ва	Barium 56	226	Kadium	88	*58-71 anthanoid series	30-7 1 Eartinailoid series		a	×	هٔ
	_				7	:	3 Lithium	23	Na	Sodium 11	39	¥	Potassium 19	85		Rubidium 37	133	Cs	Caesium 55	Ĺ	Francium	87	*58-71	190-103,	8		Key	۵

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.