

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

5070 CHEMISTRY

5070/21

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' version	Syllabus	Paper		
			GCE O LEVEL – May/June 2011	5070	21		
A1	Allo	llow correct name but formula takes precedence					
	(a)	V ₂ O ₅ (1)		[1]		
	(b)	ZnSO₄	(1)		[1]		
	(c)	AgI (1)			[1]		
	(d)	CF ₃ C <i>l</i> ₃	(1)		[1]		
	(e)	(NH ₄) ₂ S	SO ₄ / ZnSO ₄ (1)		[1]		
	(f)	CH ₄ (1)			[1]		
	(g)	(NH ₄) ₂ S	SO ₄ (1)		[1]		
					[Total: 7]		
A2	(a)	sulfur d Allow S	ioxide (1) SO ₂		[1]		
	(b)	copper(Allow ((II) sulfate (1) CuSO₄		[1]		
	(c)		$DH^- \rightarrow H_2O(1)$ state symbols		[1]		
	(d)		pper(II) hydroxide (1) ow Cu(OH) ₂		[1]		
		Bal	²⁺ (aq) + 2OH⁻(aq) → Cu(OH)₂(s) lanced equation (1) rrect state symbols (1)		[2]		
	(e)	Mol rati	o Cu:O = $\frac{79.9}{64}$: $\frac{20.1}{16}$ / 1.25 : 1.26 (1)				
		CuO (1			[2]		
					[Total: 8]		

	Page 3		6	Mark Scheme: Teachers' version	Syllabus	Paper
				GCE O LEVEL – May/June 2011	5070	21
A3	(a)	(i)	same number of electrons / same number of protons / same e arrangement of electrons / both have 92 electrons / both have 92 protons			
		(ii)	(ii) different number of neutrons / uranium-238 has three more neutrons (1)			
	(b)	(i)	UO ₂	+ 4HF \rightarrow UF ₄ + 2H ₂ O (1)		[1]
		(ii) UF ₄ + 2Mg \rightarrow U + 2MgF ₂ (1)				
	(iii)			tion involving gain of electrons / reaction involving dec ${f w}$ a reaction involving the loss of oxygen / gain of hydr		n number (1) [1]
	(iv) M_r of UO ₂ = 270 (1) Moles of UO ₂ = 3704 (1) Allow ecf from wrong M_r Mass of uranium = 0.881 tonnes (1) Allow ecf from wrong Correct answer scores all three marks			es of $UO_2 = 3704$ (1) Allow ecf from wrong M_r s of uranium = 0.881 tonnes (1) Allow ecf from wrong	moles	
			M _r o [∙] % of	rnative approach using percentage composition f UO ₂ = 270 (1) f U = 88.1% (1) Allow ecf from wrong M_r s of uranium = 0.881 tonnes (1) Allow ecf from wrong	percentage	[3]
	(c) between magnesium and copper (1)				[1]	
						[Total: 9]

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE O LEVEL – May/June 2011	5070	21	
A4	(a)	All covalent bond pairs shown (1) Rest of structure correct (1) Ignore inner shell electrons of oxygen			[2]	
	(b)	Must be Particles Particles)	[2]		
	(c)	Particles in pure hydrogen peroxide are more crowded / closer together / m unit volume / particles are more concentrated (1) So more collisions per second / increased collision frequency / collisions m chance of collision / collisions more likely (1)				
	(d)	(i) Fe ²⁴ Allo Allo		[1]		
		(ii) Add ions	sodium hydroxide (solution) / (aqueous) Ammonia (1)	a / add (aqueo	us) hydroxide	
		Sho	uld be a brown-rust ppt (1)		[2]	
	(e)	(Colour (Colour	[2]			
					[Total: 11]	
A5	(a)	78–79 % (1)			[1]	
	(b)		al distillation (1) air / liquefy air (1)			
		because	(the components of air have) different boiling points (1)	[3]	
	(c)	Idea that carbon cycle involves photosynthesis and respiration (1) Photosynthesis decreases carbon dioxide and increases oxygen / green plants ch carbon dioxide into oxygen (1) And				
		any two from Respiration increases carbon dioxide and decreases oxygen (1) Combustion increases carbon dioxide and decreases oxygen (1) Decomposition (of living things) increases carbon dioxide (1)				
	(d)				sions of power [2]	
					[Total: 10]	

	Page 5		Mark Scheme: Teachers' version	Syllabus	Paper
B6			GCE O LEVEL – May/June 2011 nitrate solution contains ions / AW (1) only contains molecules / pentane is a covalent co ions (1)	5070	21 ane does not [2]
	(b)	Sodium and chlorine (1) Allow Na and Cl ₂			[1]
	(c)	Hydroge Allow H	[1]		
	(d)	 Electrolyte is aluminium oxide (dissolved in cryolite) / alumina (1) Graphite electrodes / Carbon electrodes (1) 			[2]
	(e)		s plated with copper (1) $f^{+} + 2e^{-} \rightarrow Cu (1)$		[2]
		(ii) 1.2	1 (g)		[1]
		(iii) 1.7	5 (g)		[1]
					[Total: 10]
В7	(a)	Propano	ol / propan-1-ol / propan-2-ol (1)		[1]
	(b)	Only co	CH ₂ CH ₂ OH / CH ₃ CH ₂ CHOHCH ₃ (1) ntains (C—C) single bonds (1) nere are no (carbon-carbon) double bonds		[2]
	(c) C ₇ H ₁₆ O Allow C				[1]
	(d)	(i) CH	$_{3}COOC_{2}H_{5}(1)$		[1]
		(ii) Sol Alle	vent (1) ow flavouring / perfume		[1]
	(e)	Use of y Any ten conditio	$_{3} \rightarrow 2C_{2}H_{5}OH + 2CO_{2} (1)$ weast (1) perature or range of temperature within 20–40 °C / a ns / presence of water / Fractional distillation (to separa ncorrect reactants this has been assessed by the equa	ate ethanol) (1)	en / anaerobic [3]
	(f)	Ethene	/ C ₂ H ₄ (1)		[1]

[Total: 10]

	Page 6			Mark Scheme: Teachers' version	Syllabus	Paper
				GCE O LEVEL – May/June 2011	5070	21
B8	(a)	 (i) Position of equilibrium moves to the right (1) Allow make more CH₃COOH Because the reaction is exothermic / to release energy (1) This mark is dependent the position of equilibrium moves to the right 				
		(ii) Reaction is faster / activation energy is very high (1)				
	(b)	 Labelled products to the right and below reactants (1) Correct labelled activation energy for the forward reaction (1) Allow double headed arrow head / arrow without any heads Not arrow in wrong direction Correct labelled enthalpy change (1) Not arrow in wrong direction / double headed arrow Note – arrows do not have to start exactly at reactant level and finish exactly at p maximum of curve Maximum of two marks for an error carried forward for a reaction that is endine. 				
	(c)	 Lowers the activation energy (1) Allow more effective collisions / more successful collisions 				
	(d)) Maximum moles that can be made is 10 / limiting reactant is the carbon monoxide (1) 98% (1)				
	(e)	CH ₃ (CO ₂ N	JH ₄ (1)		[1]
						[Total: 10]
В9	(a)	Only	v part	ially dissociates / does not completely ionise (1)		[1]
	(b)	Use universal indicator (1) Idea that the different colours indicate different pH values / match colour a chart (1) Allow this mark even for an incorrect indicator			match colour ag	jainst a colour [2]
	(c)	Moles of sulfamic acid = $\frac{0.105}{97}$ / 0.00107 (1)				
		Moles of KOH = $\frac{10.8}{1000}$ × 0.100 / 0.00108 (1) so reacts with one mole (1)				
	(d)	I) (i) Mg + 2SO ₃ NH ₃ \rightarrow Mg(SO ₃ NH ₂) ₂ + H ₂ (1)				[1]
		(ii) $CaCO_3 + 2SO_3NH_3 \rightarrow Ca(SO_3NH_2)_2 + H_2O + CO_2(1)$ Forms carbon dioxide / bubbles (1) Allow carbon dioxide from the equation				
	(e)	e) Nitrogen (1)			[1]	
	-					[Total: 10]