MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

5070 CHEMISTRY

5070/22
Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Syllabus	Paper
5070	22

A1 (a) (i) potassium / K
(ii) aluminium / Al
(iii) iron / Fe
(iv) magnesium / Mg
(v) silver / Ag

ALLOW: symbols such as Ag, Fe etc.
(b) positive ions regularly arranged;

ALLOW: space between ions as long as the arrangement is regular
ALLOW: ions touching
ALLOW: positively charged atoms for + ions
ALLOW: large empty circles in regular arrangement and labelled as positive ions
electrons shown as negative charges between the ions;
ALLOW: very small empty circles between the ions and labelled electrons
ALLOW: electrons within very small circles / electrons as e^{-}or e or -
IGNORE: disparity between ionic charges and number of electrons
NOT: electrons as negative charges in large circles
NOTE: mark independently
[Total: 7]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - October/November 2010	5070	22

A2 (a) (i) glucose;
ALLOW: other suitable sugars e.g. sucrose
ALLOW: sugar
IGNORE: carbohydrate
(ii) any two from:
temperature within range $20-40^{\circ} \mathrm{C}$;
IGNORE: temperatures below $20^{\circ} \mathrm{C}$
REJECT: high temperature / temperatures above $40^{\circ} \mathrm{C}$
lack of oxygen / lack of air / anaerobic
REJECT: oxygen needed
yeast
IGNORE: bacteria / fungi / enzymes / catalyst / zymase
water present / in solution / moisture present / damp
REJECT: dry
pH neutral
REJECT: acid / alkali
IGNORE: pressure
IGNORE: optimum pH / temperature etc.
(b) $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

ALLOW: displayed / graphical formulae
ALLOW: $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ for ethanol
IGNORE: state symbols
(c) (i) ethyl ethanoate / ethyl acetate
(ii) esterification / addition-elimination / condensation / ester formation;

ALLOW: reversible / equilibrium (reaction)
IGNORE: exothermic / endothermic
REJECT: addition alone
(d) (i) propanol;
(ii)

ALLOW: structure of propan-2-ol
ALLOW: - OH in place of $-\mathrm{O}-\mathrm{H}$

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - October/November 2010	5070	22

A3 (a) $12.5 \mathrm{~cm}^{3} / \mathrm{min}$
both value AND units must be correct for one mark
(b) all the zinc was used up / there was no zinc left / zinc is limiting;

IGNORE: the zinc no longer reacted / zinc finished reacting / all the zinc dissolved
(c) (i) line steeper from the 0-0 point AND ending at the same level $\left(40 \mathrm{~cm}^{3}\right)$
(ii) lowers the activation energy / makes the reaction go by a more efficient pathway / makes the reaction go by faster pathway;
ALLOW: makes the reaction go by a different pathway IGNORE: supplies activation energy / increases speed of reaction
(d) goes slower / speed decreases / smaller surface area (with larger pieces) / less area exposed (with larger pieces);
ALLOW: (reaction) takes more time
IGNORE: goes slowly / small surface area
REJECT: goes slower at the start + larger surface area for larger pieces
fewer collisions per minute / fewer particles exposed to react per minute / particles collide less often / frequency of collisions decreased / collision rate lower / chance of collisions decreases;
Answer must be comparative e.g. NOT: few collisions per minute
(e) any two from:

- increases / goes faster

ALLOW: (reaction) takes less time
NOT: goes fast

- particles have more energy (at higher temperature) / particles move faster (at higher temperature) / particles collide faster / collision rate increases;
IGNORE: particles vibrate more
NOTE: must have reference to particles or named particles
- more particles have activation energy / more chance of successful collisions / more collisions are successful

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - October/November 2010	5070	22

A4 (a) molecule containing two atoms / two atoms joined (by bond) / atoms in A pairs;
ALLOW: has two atoms
IGNORE: two atoms / two atomic / mention of states / mention of same or different elements / made of two elements / elements with two atoms / 2 atoms of itself combined
(b) (i) gets darker / chlorine green bromine red (or brown or red-brown) and iodine greyblack or grey or black
ALLOW: goes from green to black or from yellow (F_{2}) to black
NOT: iodine dark brown / silver
NOT: colour increases / gets more intense
REJECT: chloride / bromide / iodide (instead of halogens)
(ii) bromine - liquid; (1)
iodine - solid (1)
(c) (i) $\mathrm{Br}_{2}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Br}^{-}+\mathrm{I}_{2}$

IGNORE: state symbols $/ \mathrm{K}^{+}$ions
(ii) add (aqueous) silver nitrate / (aqueous) lead nitrate; (1)

ACCEPT: formulae
REJECT starch test alone / addition of chlorine alone
REJECT: if incorrect acid added
yellow precipitate; (1)
(both yellow and precipitate needed for mark)
NOTE: second mark dependent on correct reagent.
(iii) chlorine more reactive than bromine (or reverse argument)

NOT: chloride more reactive than bromine
(d) $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$and Cl^{-}(both needed for the mark)

ALLOW: $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{Cl}^{-}$and OH^{-}
ALLOW: correct answer as part of equation e.g. $\mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$
ALLOW: $\mathrm{H}^{+} \mathrm{Cl}^{-}$
(e) moles $\mathrm{HCl}=0.015 \times 6 / 1000 \mathrm{OR} 9 \times 10^{-5}$; (1)
moles $\mathrm{Ca}(\mathrm{OH})_{2}=1 / 2$ those of moles $\mathrm{HCl} ;\left(4.5 \times 10^{-5}\right)(1)$
ALLOW: any indication of correct 1:2 ratio
molarity of $\mathrm{Ca}(\mathrm{OH})_{2}=4.5 \times 10^{-5} \times 1000 / 20=2.25 \times 10^{-3}\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)(1)$
ALLOW: correct answer without working $/ 2.3 \times 10^{-3}\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)$
ALLOW: Use of $\frac{V_{1} M_{1}}{V_{2} M_{2}}$ with correct figures e.g. $\frac{20 \times M_{1}}{0.015 \times 6}$ (1 mark)
correct use of 1:2 ratio e.g. for the above $1 / 2=\mathrm{V}_{1} \mathrm{M}_{1} / \mathrm{V}_{2} \mathrm{M}_{2}$ (1 mark)
correct answer (1 mark)

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - October/November 2010	5070	22

A5 (a) (i) 1 mark for each pair of matching descriptions up to max of 2 marks

- diamond: atoms closely packed
graphite: layers / atoms less closely packed /
- diamond: each atom joined to 4 other atoms
graphite: each atom joined to 3 others
ALLOW: (atoms in) diamond form more bonds than graphite
- diamond: atoms arranged tetrahedrally / in a pyramid / in bent hexagons / ALLOW: in triangles
graphite: atoms arranged in hexagons / rings / layers
- diamond: all atoms connected (by covalent bonds)/
graphite: some atoms (i.e. those between layers) not connected (by covalent bonds)
- graphite: had intermolecular forces / van der Waal's forces
diamond doesn't / has strong forces or bonds throughout
- diamond has no free moving electrons / no delocalised electrons / all electrons involved in bonding graphite has (some) delocalised / mobile electrons
(ii) in graphite the layers can slide / weak forces between the layers / intermolecular forces between the layers;
in diamond there is continuous 3 dimensional structure of (covalent) bonds / covalent bonds are linked in all directions / (strong) bonding in all directions / all atoms in fixed positions
ALLOW: all the atoms are bonded together
REJECT: ionic structure
(b) (i) oxygen removed from the tin oxide / it loses oxygen / carbon takes oxygen away; ALLOW: oxidation number of tin (in tin oxide) decreases / tin (in tin oxide) gains electrons
ALLOW: tin loses oxygen /
NOT: wrong oxidation numbers / electron gain without qualification
(ii) it is poisonous / toxic;

IGNORE: kills red blood cells / stops red blood cells carrying oxygen / combines with haem
IGNORE: harmful / causes pollution / dangerous / hazardous
(c) (i) $\mathrm{CO}_{2}+\mathrm{C} \rightarrow 2 \mathrm{CO}$

IGNORE: state symbols
(ii) 6 electrons shared between C and O ; (1)

2 non bonding electrons on outer shell of oxygen and 2 non bonding electrons on outer shell of carbon (1)
REJECT: 0 non bonding electrons on outer shell of oxygen and 4 non bonding electrons on outer shell of carbon
IGNORE: dots / crosses
IGNORE: inner shell electrons
NOTE: mark these points independently
(iii) $\mathrm{CrC}_{6} \mathrm{O}_{6}$

ALLOW: $\mathrm{Cr}(\mathrm{CO})_{6}$
[Total: 10]

B6 (a) plants absorb CO_{2} from atmosphere / plants take up CO_{2} in photosynthesis; (1)
ALLOW: plants use carbon dioxide
CO_{2} given out in respiration; (1)
ALLOW: carbon dioxide breathed out in animals
Amount of CO_{2} given out (in respiration) equal to that absorbed (in photosynthesis) / idea of (roughly) equal uptake and release of carbon dioxide; (1)
ALLOW: carbon dioxide given out in balance with carbon dioxide taken up
(b) (i) any two possible consequences (1 mark for each) e.g.

- sea level rise / flooding of low lying land /

ALLOW: floods
NOT: increase in water level

- climate change / extreme weather / increased rainfall /

NOT: weather unpredictable

- desertification / more forest fires / more droughts /
- melting of glaciers / melting of polar ice caps / melting icebergs NOT: increase in temperature / greenhouse effect skin cancers
(ii) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

ALLOW: multiples
IGNORE: state symbols
(iii) substitution (by chlorine) / reaction with chlorine (in the light) /

ALLOW: suitable word equation or symbol equation
REJECT: addition reaction

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - October/November 2010	5070	22

(c) (i) larger / longer / heavier / molecules have higher boiling points;

ALLOW: higher boiling point when more carbon atoms (in molecule)
IGNORE: the boiling points increase / they get higher
IGNORE: higher boiling point with more bonds / reference to intermolecular forces
/ melting points / 'bond' breaking between molecules
(ii) high temperature / heat;

ALLOW: quoted temperatures between $300^{\circ} \mathrm{C}-800^{\circ} \mathrm{C}$
EITHER:
Catalyst / named catalyst e.g. aluminium oxide / silicon dioxide / zeolites
ALLOW: porous pot / ceramics
REJECT: incorrect catalyst
OR:
high pressure / quoted pressure between 50-200 atmospheres
[Total: 10]

B7 (a) in solid ions can't move / ions in fixed position / no free ions / ions are in a lattice;
IGNORE: there are no ions / reference to electrons
when molten ions can move / ions are free to move / are mobile;
ALLOW: ions are free
IGNORE: ions moving in solution
REJECT: reference to electrons moving (in addition to ions moving) /
(b) anode: chlorine AND cathode: zinc

ALLOW: $\mathrm{Cl}_{2} / \mathrm{Cl} / \mathrm{Zn}$
ALLOW: correct products from equation (need not be balanced)
REJECT: Cl^{-}/ chloride / Zn^{2+}
(c) $4 \mathrm{OH}^{-} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-}$

1 mark for correct reactants and products $\left(\mathrm{OH}^{-}, \mathrm{O}_{2}\right.$ and $\left.\mathrm{H}_{2} \mathrm{O}\right)$
1 mark for correct balance with electrons
ALLOW: multiples in both cases
ALLOW: efor e^{-}
(d) add (aqueous) sodium hydroxide / other suitable hydroxide / (aqueous) ammonia; (1)

NOT: hydroxide alone
white precipitate; (1)
precipitate soluble in excess (hydroxide or ammonia) / dissolves in excess / gives colourless solution in excess (1)
(e) correct formula masses 136 for ZnCl_{2} AND 204 for $\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}$ (1)
correct answer ($3.4 \times 204 / 136$) $=5.1$ (g) (1)
ALLOW: error carried forward from one incorrect formula mass

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - October/November 2010	5070	22

B8 (a) (i) magnesium oxide and hydrogen (both required)
ALLOW: correct formula of products
IGNORE: incorrect equation
(ii) $2 \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{Mg} \rightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Mg}+\mathrm{H}_{2}$

1 mark for correct reactants and products
1 mark for balance (dependent on correct reactant and products)
(b) any three from:

- add hydrochloric acid to (excess) magnesium carbonate;

REJECT: this first mark if titration suggested

- filter (off excess carbonate);
- heat filtrate or solution to crystallisation point / evaporate off (some of) the water from the filtrate / leave in a warm place / leave to crystallise; NOT: heat / dry it / put it in the oven / let all water evaporate
- pick out crystals / filter off crystals / dry crystals on filter paper
(c) (thermal) decomposition

ALLOW: endothermic
(d) (i) height or strength of Bunsen flame /

ALLOW: temperature of Bunsen / temperature / amount of energy (applied) / distance of Bunsen flame from tube / amount of carbonate in the tube / ALLOW: volume of carbonate in tube / mass of carbonate / same amount of limewater in tube
ALLOW: same size of (carbonate) particles
IGNORE: pressure
(ii) order of decomposition is copper (carbonate) > zinc (carbonate) > magnesium (carbonate); (1)
ALLOW: copper carbonate takes shortest time and magnesium carbonate takes longest time / copper carbonate the fastest and magnesium carbonate the slowest
the less reactive (the metal), the faster the rate (of decomposition) /
the more reactive (the metal) the slower the rate (of decomposition) / the more reactive (the metal) the longer it takes (to decompose) / (1)

Page 10	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - October/November 2010	5070	22

B9 (a) (i) burning fossil fuels / burning named fossil fuel / volcanoes / smelting sulfide ores;
IGNORE: gases from exhausts / factory chimneys / power stations / burning sulfur / decomposition of fossil fuels
(ii) any suitable e.g.

- erosion of buildings / statues (made of carbonate rocks / limestone)/

IGNORE: erosion of rocks / destroys building / dissolves stones ALLOW: corrosion of buildings / damages buildings

- corrosion of metal structures / bridges etc. / ALLOW: erosion of metal structures etc.
- forest death / crop loss / reduction in plant growth / do not grow properly NOT: kills plants (in stem of question) / destroys trees
- soil acidification / leaching from soil
(b) (i) $\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

1 mark for balanced equation
1 mark for correct state symbols (dependent on correct formulae)
ALLOW: $\mathrm{CaSO}_{4}(\mathrm{~s})$
(ii) Any suitable use e.g.
(making) paints / (making) dyes / (making) plastics / (making) fertilisers / (making) fibres / (making) soaps / (making) detergents / cleaning metals / oil refining / waste water processing / removing rust
ALLOW: for adjusting pH of the soil / making soil less alkaline / car batteries / catalyst /
IGNORE: general chemical used in the lab / dehydrating agent
(iii) completely ionised / completely dissociated;

ALLOW: the hydrogen ion is fully ionised / completely ionises the hydrogen ions IGNORE: low pH / has more hydrogen ions
(c) air AND sulfur (both needed)

ALLOW: oxygen and sulfur
ALLOW: sulfide ore in place of sulfur
(d) (i) enthalpy change

ALLOW: heat change / amount of energy released or absorbed / heat of reaction / energy change
IGNORE: exothermic / thermal energy / amount of energy released / amount of energy absorbed / enthalpy
(ii) reaction goes to left / favours the reactants / reverse reaction occurs / amount of product decreases; (1)
(because) the reaction is exothermic; (1)
ALLOW: goes to the side which is endothermic

