MARK SCHEME for the May/June 2009 question paper

for the guidance of teachers

5070 CHEMISTRY

5070/02

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' versionSyllabusGCE O LEVEL – May/June 20095070		Paper 02
			Section A	5070	02
A1	(a)	NOT: Mr	I(V) oxide / V ₂ O ₅ / vanadium oxide ;		[1]
	(b)	copper(I	I) chloride / CuC l_2 / copper chloride / copper ;		[1]
	(c)	ethanoic	acid / ethanoic / correct formula ;		[1]
	(d)	potassiu NOT: po	m dichromate(VI) / (potassium) dichromate / correct fo tassium	ormula ;	[1]
	(e)		/ (potassium) dichromate(VI) / manganese(IV) oxide ; (concentrated) sulfuric acid		[1]
					[Total: 5]
A2	(a)	ALLOW: NOT: the NOT: no NOT: has NOT: we	ces <u>between layers</u> / van der Waals forces <u>between la</u> weak bonds <u>between layers</u> oforces are weak / has weak forces between atoms forces / bonds between layers s layers and weak forces eak forces between molecules eak electrostatic forces between layers	<u>yers</u> ;	[1]
			an slide / slip ; oms slide over each other		[1]
	(b)	(all) elect ALLOW:	e / no moving electrons / no delocalised electrons / trons in covalent bonds ; no free electrons / no sea of electrons : no ions		[1]
	(c)	 high IGN0 lots of ALL0 ALL0 ALL0 ALL0 NOT NOT 	ORE: strong / tough melting point ORE: high boiling point <u>of strong</u> (covalent) bonds OW: giant structure of strong bonds OW: has strong bonds throughout OW: all the bonds are difficult to break / takes a lot o ds OW: ideas of all the atoms held together strongly T: has covalent bonds / has strong bonds (without qual T: rigid arrangement of tetrahedral structure	ification)	[2] all the
		NOT	: strong forces of attraction between atoms / strong el	ectrostatic forces	

	Page 3			Mark Scheme: Teachers' version	Syllabus	Paper
				GCE O LEVEL – May/June 2009	5070	02
A3	(a)	(i)	NOT: O	oxygen / O ₂ ;		[1]
			ions: H⁺,	copper / Cu ; OH ⁻ , SO4 ²⁻ ; e needed for the mark)		[1] [1]
		(ii)	hydroge easi <u>er</u> to hydroge ALLOW:	n low <u>er</u> in reactivity series (than sodium) / n low <u>er</u> in discharge series (than sodium) / o reduce hydrogen <u>ions</u> (than sodium) / n <u>ions</u> gain electrons more easily ; it is lower in reactivity series drogen is easier to discharge (than sodium)		[1]
		(iii)	idea of s chloride NOT: ref NOT: lov	ions lower in discharge series than hydroxide ions elective discharge of chloride ions/ ion concentration greater than hydroxide ion conc ference to chlor ine / chlor ine ions wer in discharge series than oxygen loride ions lower in reactivity than hydroxide		[1]
	(b)	(i)	making I	on of copper/ high grade copper/ E: uses of copper / for coating metals / for electrop	lating	[1]
		(ii)	current:	ture: no effect / no change increasing current increases mass (of copper) OR mass proportional to current	A	[1] [1]
			time: inc ALLOW:	increase of 1 amp doubles the mass reasing time increases mass (of copper) ORA mass proportional to time with the passage of time mass increases		[1]
						[Total: 9]
A4	(a)	Cha	arges:	neutron = 0 / zero / none AND proton = + / plus 1 / +1 ;		[1]
		Rel	ative mas	s: electron = 0 / negligible / 1/1840 / 1/2000 / 0.00 neutron = 1 / one	005 AND	[1]
	(b)		ark for co	prrect nucleon and proton number as shown ; prrect symbol ;		[2]
	(c)	nun	nber of ne	n two shells AND 5 protons shown ; eutrons other than 6 ; ween 3 and 10 neutrons		[1] [1]
						[Total: 6]

Page 4			Mark Scheme: Teachers' version	Syllabus	Paper
			GCE O LEVEL – May/June 2009	5070	02
A5	(a)		4 chlorine atoms bonded to carbon by pair of electrons ructure correct i.e. 6 unbonded electrons on each chlo		[1] [1]
	(b)	correct c	2,8,8 and Cl^- as 2,8,8 in diagram or as numbers ; harges at top right of each structure ; correct ions shown as Ca ²⁺ and Cl ⁻		[1] [1]
					[Total: 4]
A 6	(a)	KNO ₃ / C	Ca(NO ₃) ₂ / Fe(NO ₃) ₂ ;		[1]
	(b)	(both aci	ecause <u>H⁺</u> / <u>hydrogen ions</u> present ; dic and hydrogen ions needed) drogen and nitrate ions		[1]
	(c)		25 × 0.450 = 11.25 / 11.3 / 11 ; 56 × 11.25 = 630 (g) ;		[1] [1]
	(d)	of iron(II NOT: iro white pre ALLOW:	<u>reen precipitate</u> ;) hydroxide ; n(III) hydroxide / ppt of iron / ppt due to iron(II) ions ecipitate / ppt of calcium hydroxide formed ; idea of calcium hydroxide precipitate masked / cannot ite ppt dissolves in excess	t be seen	[1] [1] [1]
	(e)	add alun heat / wa gas give ALLOW: NOT: sm NOTE: th correct OR mix solut add <u>cond</u> idea of n brown rin	ess) sodium hydroxide (solution) ; ninium / Dervarda's alloy ; arm ; n off turns (moist) red litmus blue/ ammonia gas given off / nelly gas given off his mark is consequential on both the reagents A <i>l</i> and tion with (freshly made) iron(II) sulfate (solution) ; (1 m <u>centrated</u> sulfuric acid ; (1 mark) naking layer of sulfuric acid over the solution / idea of t ng (at interface) ; (1 mark) his mark is consequential on both the reagents being	ark) wo layers ; (1 ma	ark)
			have to be concentrated		
					[Total: 11]

[Total: 11]

Page 5		Mark Scheme: Teachers' version	Syllabus	Paper
		GCE O LEVEL – May/June 2009	5070	02
A7 (a)	ALLC	correct structure of chloroethene ; ALLOW: CH ₂ =CHC <i>l</i> NOT: CH ₂ CHC <i>l</i>		[1]
(b)		$2 - C_2H_3Cl - + 5O_2 \rightarrow 2HCl + 4CO_2 + 2H_2O$ ALLOW: multiples / fractions		[1]
	• •	alcium chloride ; ALLOW: CaC <i>l</i> ₂		[1]
(c)	corre e.g. r (l' f t t f t t t	ct name of condensation polymer ; ct use of the named polymer ; nylon (1) dothing / fishing lines / fishing nets / ropes / stockings bristles) / balloons / guitar strings / racquet strings / petro GNORE: fibres without qualifications polyester / terylene / mylar / PET (1) erylene: clothing / sheets / pillowcases / furniture cove ropes / sails / machinery belts PET: bottles and any of the above nylar: balloons polyester: any of the above (1) GNORE: fibres without qualifications Kevlar (1) pullet proof vests / canoes / racquets / car tyres (as comp GNORE: fabrics / textiles / fibres without qualifications	ol tanks (1) rings / curtains /	

[Total: 5]

Page 6		Mark Scheme: Teachers' version	Syllabus	Paper
		GCE O LEVEL – May/June 2009	5070	02
		Section B		
38 (a)	NOT: Any o • se di N ca • se	oil / petroleum heated in fractionating column / idea of ideas of simple distillation / reference to distillation in th ne of: eparated according to different boiling point (from other ifferent boiling points / has specific range of boiling point OT: incorrect references to petrol e.g. petrol has the omes off at the top eparated according to size of molecules (from other ifferent chain lengths ; etrol made by cracking of long chained hydrocarbons /	e lab r fractions) / fractio ts ; e lowest boiling p fractions) / fractio	ons have points so ons have
	•	quation showing cracking		, [
(b)) (i) 1	0 800 g / 10.8 kg		[′
	m A O N A	noles carbon dioxide = 10 800 / 44 = 245.45 ; noles octane = 245.45 / 8 = 30.68 ; LLOW: 1 mark for showing division of moles of carbon ctane 114 ; lass of octane = 114 × 30.68 = 3497.5 (g) / 3498 (g) / 3 LLOW: 1 mark for multiplying moles of octane by 114 v alculation.	500 (g)	[' ['
(c)	NO / r	onverted to carbon dioxide ; hitrogen oxide(s) converted to nitrogen ; W: CO + NO \rightarrow CO ₂ + $\frac{1}{2}N_2$ = 2 marks (even if not cor	rectly balanced)	[[
(d)		ain / effect of acid rain/ smog ; RE: breathing difficulties / irritation of nose and throat		[

Pa	Page 7		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE O LEVEL – May/June 2009	5070	02
B9 (a)	• • •	have have have phys	e of: (1 mark each) e general formula / each member differs by CH ₂ group e same functional group e similar chemical properties fical properties show a trend / example of physical pro- ng points increase with longer carbon chain	•	[3] rend e.g.
(b)	(i)	any	value between 105 and 130°C (actual = 117°C)		[1]
	(ii)	C ₆ H₁	₃ OH		[1]
(c)	• •		$_{1} + H_{2}O \rightarrow C_{2}H_{5}OH$ ORE: state symbols		[1]
	()		tion OW: hydration / additional : exothermic		[1]
(d)	use OR	of m	oles e.g. 180 g glucose \rightarrow 2 × 46 or 92 g ethanol		[1]
	100	mole	es glucose (18000 / 180) $ ightarrow$ 200 moles ethanol ;		
	theo OR	retic	al yield calculated e.g. 18 kg glucose $ ightarrow$ 9.2 kg ethan	ol	[1]
	200 × 46 = 9200 g ethanol ;				
	% yi	eld c	alculated e.g. 100 × 0.92/9.2 = 10% ;		[1]
					[Total: 10]

Page 8		Mark Scheme: Teachers' version	Syllabus	Paper
		GCE O LEVEL – May/June 2009	5070	02
B10(a)	Correct /	<i>M</i> _r values: (NH ₄) ₂ SO ₄ = 132 AND KNO ₃ = 101 ;		[1]
	OR	NH ₄) ₂ SO ₄ (2 × 14 / 132) = 21.2% / 21.21% ; N in 500 g = 500 × 28/132 = 106.1 g		[1]
	OR	NO ₃ (14 / 101) = 13.9% / 13.86% ; in 500 g KNO ₃ = 500 × 14/ 101 = 69.3 g		[1]
	overall p ALLOW:	ercentage = 17.6% / 17.5(5)% / ; 18 %		[1]
(b)	 rapid ALL NOT bloc bact bact NOT aqua 	e from: (one mark each) d growth of algae / water weeds / algal bloom OW: rapid growth of (green) plants T: plants grow, unqualified (must be increased/ rapid ef ks (sun)light so plants die erial growth increases eria use up oxygen T: algae / plants use up oxygen atic life dies / aquatic animals die / fish die because of T: marine organisms die		[3]
(c)	titration / ALLOW: crystallis evaporat	ssium carbonate solution / potassium hydroxide (solut description of titration AND repeat titration without ind titration with indicator then remove indicator with char e / description of crystallisation AND dry with filter pap te off some water AND dry in oven / put in oven to allo ter to evaporate completely / boil off all the water	licator ; coal er /	[1] [1] f water /

[Total: 10]

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2009	5070	02
1	Electrons lost/ oxidation number (of iron) increases / oxic :o +2 ; NOT: incorrect oxidation numbers	lation number goe	es from 0 [1]
	$Fe^{2+}(aq) + 2OH^{-}(aq) \rightarrow Fe(OH)_2(s)$ correct balanced equation = 1 mark correct state symbols = 1 mark (mark for state symbols dependent on correct formulae)		[2]
	stops water from getting to the surface (of the iron) / stops oxygen getting to surface (of the iron) / stops oxygen / water getting to the iron / stops air getting to the iron / ALLOW: acts as a <u>protective barrier</u> / <u>layer</u> NOT: ideas about sacrificial protection NOT: tin does not react with water / air / tin less reactive ⁻	than iron	[1]
• • •	with tin: oxygen / water can react with the iron (where it is	scratched);	[1]
	 NOT: iron more reactive than tin with zinc any two of: zinc more reactive than iron NOT: zinc oxide protective layer zinc is sacrificial metal / idea of sacrificial protection readily than iron / zinc reacts first NOT: zinc rusts more readily than iron zinc loses electrons more readily than iron NOT: zinc displaces iron 	n i.e. zinc corrod	[2] les more
layer layer NOT	ayer of (aluminium) oxide that will not flake off / of insoluble / unreactive (aluminium) oxide / of impermeable (aluminium) oxide / protective oxide laye : oxide coating without further qualification : forms a protective layer with oxygen	er /	[1]
	drink cans / car bodies / aircraft bodies / high voltage elec cooking foil / window frames / ladders / ALLOW: cooking utensils / mirrors (as does not corrode)	ctricity cables /	[1]
corre e.g. (NOT: for cutlery ect explanation related to specific use stated ; drinks cans \rightarrow will not react with water / acids car bodies \rightarrow will not corrode aircraft bodies \rightarrow lightweight / low density electricity cables \rightarrow lightweight / good conductor of electr	icity	[1]