UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2008 question paper

5070 CHEMISTRY

5070/02

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2			2	Mark Scheme	Syllabus	Paper
				GCE O LEVEL – May/June 2008	5070	02
A 1	(a)	carbon monoxide / CO				
	(b)	am	monia	a / NH ₃		[1]
	(c)	arg	on / A	ur .		[1]
	(d)	car	bon m	nonoxide / CO		[1]
	(e)		gen / T: O	O_2		[1]
						[Total: 5]
A2	(a)		` '	/ 36.8 / 37(%) (answer alone = 2 marks) (NOT 36%) (II) sulphate = 152 (for 1 mark)		[2]
	(b)	barium nitrate / other soluble barium salt e.g. barium chloride + nitric / hydrochloric acid NOT: barium hydroxide white precipitate / solid IGNORE: incorrect name of precipitate ALLOW: this mark if nitric acid missing from 1 st marking point				oric acid [1]
	(c)	1 m	nark fo	D ₂ + 4H ⁺ → 4Fe ³⁺ + 2H ₂ O or correct reactants and products; or correct balance		[2]
	(d)	(i)	oran	ge to green		[1]
		(ii)		n to yellow OW: brown / orange / reddish brown		[1]
	(e)	(i)	0.00	0076 / 7.6 × 10 ⁻⁴ (moles)		[1]
		(ii)		$E_{\rm F} = 0.00456$		[1]
			mass	OW: 0.0046 s of iron(II) ions = 0.255 /0.26 / 0.258 (g) OW: error carried forward [i.e. answer to moles Fe ²⁺ ×	56]	[1]

[Total: 11]

	Page 3		Mark Scheme	Syllabus	Paper	
			GCE O LEVEL – May/June 2008	5070	02	
А3	(a)	43 protor 55 neutro	[1] [1]			
	(b)	any reas	[1]			
	(c)	ALLOW: electrons NOT: cha	mber of electrons and protons / same number of + and balance between the number of protons and electrons are - and protons are + arge on electron = to that on the proton		[1] [1]	
	(d)	 (d) any TWO from: high melting point / boiling point; variable valency / oxidation state / (compounds) have ions with different cl form coloured compounds / form coloured ions; [NOT: it is coloured / solution] high density; 				
		•	npounds) form complex ions lytic activity		[2]	
A4	(a)		alkane: (bromine) stays orange / no (colour) change / s	stays the same;	[1]	
			bromine colours of brown / red / orange alkene: (bromine) decolourised / (orange) to colourless es	S	[1]	
	(b)	6 correct	ectrons between the two carbons; shared pairs between carbons and 6 hydrogen atoms dent marking points]		[1] [1]	
	(c)	ALLOW:	$C_2H_4C\mathit{l}_2$ etc. (up to $C_2C\mathit{l}_6)$ any order of atoms correct graphical / displayed formulae / dot and cross $HC\mathit{l}$	diagrams	[1]	
	(d)	butene /			[1]	
		C_4H_8	but-1-ene / but-2-ene / methylpropene H ₃ CH ₂ CH ₂ CH ₃ / graphical formulae H _{2n}		[1]	
					[Total: 7]	

Page 4			,	Mark Scheme	Syllabus	Paper
				GCE O LEVEL – May/June 2008	5070	02
A5	(a)	(i)	P ₂ O ₅	5 / P ₄ O ₁₀		[1]
		(ii)	low r	sical property: melting point / low boiling point / electrical insulator or of OW: white in colour / solid	does not conduct	[1]
			chen acidi	nical property: ic oxide / reacts with alkalis / reacts with bases / dissol : it is an acid / dissolves in water	ves in water to fo	[1] rm acid
	(b)	1 m	ark fo	→2KC <i>l</i> + 3O ₂ or correct reactant and products; or correct balance		[2]
	(c)		_	→ SO ₂ : state symbols		[1]
	(d)			nd C _n H _{2n+2} ts a general formula		[1]
						[Total: 7]
A6	(a)	(i)	ALL(anoes / treatment of <u>sulphide</u> ores OW: bacterial <u>oxidation</u> / <u>burning</u> natural gas ORE: unqualified burning fuels / from car engines / ke / from power stations	making sulphuri	[1] c acid / from
	(ii) lightning / car engines / car exhausts / high temperature furnaces / explosives ALLOW: burning fuel in car NOT: from cars unqualified NOT: bacterial activity / from fertilizers					es [1]
	(b)	(i)	carb	on dioxide / CO ₂		[1]
		(ii)		um nitrite / calcium nitrate or correct formulae ORE: incorrect oxidation numbers		[1]
 (iii) Any one of: erodes buildings / reacts with buildings or statues ALLOW: corrodes buildings / eats away buildings NOT: destroys buildings / damages buildings forest death / kills trees or plants / kills fish in lakes / ALLOW: damages / destroys crops NOT: kills animals (unless in lakes / rivers) breathing difficulties in humans OWTTE NOT: causes pollution / harmful (unless specified) / affects 						[1] als

(c) • reactant on left and product on right and products above reactants;	[1]
 correct arrow and label for activation energy (even if exothermic reaction drawn) correct arrow and label for enthalpy change ALLOW: line in place of arrow ALLOW: E for activation energy and 43 kJ for ΔH IGNORE: direction of arrow 	[1] [1] [1]
т	otal: 8]
B7 (a) (solution) goes orange / red / brown NOT: goes yellow	[1]
C l_2 + 2Br $^ \rightarrow$ Br $_2$ + 2C l^- chlorine has gained electrons / it has gained electrons ALLOW: oxidation number of chlorine decreases / goes from 0 to -1 NOT: incorrect oxidation numbers NOT: chloride has gained electrons	[1] [1]
 (b) dot and cross diagram of magnesium ion (ignore whether dots or crosses) with 2+ at top right / near top right NOT: 2+ in nucleus ALLOW: written as Mg²⁺ = 2.8 	[1]
dot and cross diagram of chloride ion (ignore whether dots or crosses) with - at top right / near top right ALLOW: only one chloride ion shown ALLOW: written as $Cl^- = 2.8.8$ NOT: - in nucleus	[1]
(c) • dissolve it / silver nitrate in water;	[1]
 ALLOW: use / add aqueous solution / from (aq) in equation add <u>solution</u> of soluble chloride / named soluble chloride / soluble chloride dissowater / hydrochloric acid; ALLOW: hydrochloric acid alone without the word solution or dissolved in water 	olved in [1]
ALLOW: this mark if equation given with ALL state symbols correct filter;	[1]
 ALLOW: decant / centrifuge wash precipitate with water <u>and</u> leave water to evaporate / wash ppt with water leave to dry 	ter <u>and</u>
ALLOW wash ppt with water <u>and</u> dry in an oven	[1]
(d) depletion of ozone / destroys ozone (molecules) ALLOW: thins ozone layer / damages ozone layer / makes hole in ozone layer ALLOW: increases greenhouse effect / greenhouse gas NOT: increases risk / causes skin cancer	[1]
[То	tal: 10]

Mark Scheme GCE O LEVEL – May/June 2008

Page 5

Syllabus

5070

Paper 02

		9 .		GCE O LEVEL – May/June 2008	5070	02
B8	(a)			oint / volatility number of carbon atoms		[1]
	(b)	(i)	ALLO ALLO NOT NOT by <u>hi</u>	kdown of long chained hydrocarbons (into shorter / snow: large for long chained; alkanes / carbon chains food: converting long chained alkanes to alkenes: splitting larger fractions: breaking down larger substances / molecules / partices to the partices of the proper substances in range 400–80.	r hydrocarbons cles 00°C;	[1]
			NOT	 high temperature and catalyst / stated temperatures by heating / heat DW: aluminium oxide / silicon dioxide / zeolites in place 	_	-
		(ii)	great ALLO NOT gas o ALLO	ons which are less needed / exceed demand changer demand; DW: idea of less useful fractions used to make more used to less useful fractions used to make more used to less useful fractions alkanes to smaller alkanes oil fraction converted to gasoline DW: gas oil fraction converted to kerosene / petroleum DW: waxes converted to one of the above 3 fractions	seful n gases	[1]
	(c)	(i)	CH ₃ C	CH=CH ₂ (minimum structure to show double bond)		[1]
		(ii)	ALLC	$_{32} \rightarrow C_3H_6 + C_{12}H_{26}$ DW: other possible product apart from propene with co 2 $C_3H_6 + C_9H_{20}$ on right	orrect balance	[1]
	(d)	(i)	ALLO ALLO NOT	with <u>steam</u> and <u>catalyst</u> (both required) DW: phosphoric acid (in place of the word 'catalyst') DW: water + temperature of above 100°C in place of s DW: from correct equation with correct state symbols : fermentation CH ₂ CH ₂ OH / CH ₃ CH(OH)CH ₃ (as minimum)	team	[1]
		<i>(</i> ::\	ALLC	DW: full formula showing all atoms and bonds or mixtu		
		(11)		$I(CH_3) - CH_2 - CH(CH_3) - CH_2 - or full structural for DW: - [CH(CH_3) - CH_2]_n - O(CH_3)$	nula	[1]
						[Total: 10]
В9	(a)		/ H₃O⁺ T: 'hy∘	drogen ions'		[1]
	(b)	(i)	Mg ii	s Mg (0.24 / 24) = 0.01 AND moles acid (2 × 5/100) n excess since requires 2 moles acid to 1 mole mag in equation	,	[1] se of 1:2 mole [1]
		(ii)	0.00	s MgC l_2 (0.01/2) = 0.005; 5 × 95 = 4.75 / 0.48 g [NOT: 0.4 (g)] DW: error carried forward from directly above and fron	n part (i)	[1] [1]

Mark Scheme

Syllabus

Paper

Page 6

Pa	ge 7		Mark Scheme		
		GCE O LEV	/EL – May/June 2008	5070	02
	(iii)	acid / same number of ALLOW: same concentration hydrochloric acid is a acid is stronger than e hydrochloric acid fully ALLOW: hydrochloric acid higher concentration of hydrogen ions in ethan	ionised and ethanoic acid partia more ionised than ethanoic acid of hydrogen ions in hydrochloric	ach acid; ime is a weak acid lly ionised ORA acid / lower co	/ hydrochloric
(c)	(i)	$2CH_3COOH + Na_2CO_3 \rightarrow 2COOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO$	2CH ₃ COONa + CO ₂ + H ₂ O for sodium ethanoate		[1]
	(ii)	oubbles/ effervescence ALLOW: tube gets hot / he ALLOW: sodium carbonate NOT: gas given off / carbo	e dissolves / disappears		[1]
					[Total: 10]
B10(a)	reg	ar pattern of positive ions;			[1]
	ALLOW: $+/X^+/X^{2+}$ etc. for the positive ions negative sign / $e^-/e^-/e^-$ etc. for the positive ions negative sign / $e^-/e^-/e^-$ etc. for the positive ions IGNORE: inequality of numbers of electrons and + charges NOT: electrons in clumps separated from positive ions NOT: negative sign / $e^-/e^-/e^-$ e in circles unless the circles are considerably smaller than positive ions				[1] aller than the
(b)	NO NO	: electrons are free (unless	ns in the outer shells / valency	electrons if it imp	[1] blies that they
(c)	(i)	reaction is fast <u>er</u> ALLOW: lar <u>ger</u> surface are NOT: reaction is fast (com			[1]
	(ii)	moles hydrogen (0.072 / 2	4) = 0.003		[1]
		mass zinc = 0.003 × 65 = 0 ALLOW: error carried forw	•		[1]
	(iii)	16.25% / 16.3% ALLOW: error carried forw	ard from part (ii) to give values b	pelow 100%	[1]

Page 8	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - May/June 2008	5070	02

(d) three of: [3]

- (zinc gives) white precipitate (on addition of aqueous ammonia);
- (white) ppt dissolves in excess ammonia/gives colourless solution with excess ammonia;
- copper would give (light) blue ppt (on addition of aqueous ammonia);

ALLOW: ppt is not blue

 (if copper) (light) blue ppt would dissolve in excess ammonia/gives blue solution with excess ammonia;

ALLOW: no blue solution formed with excess ammonia

[Total: 10]