Mark scheme 5070/2 – Theory November 2001

A1(a)(i)	A (aqueous sodium sulphate) and B (zinc)			
(ii)	(aqueous) sodium sulphate (not Copper sulphate)			
(iii)	A (aqueous sodium sulphate)			
	4			
(1.)(')	1 1 1 1	.1 . 1	1	
(b)(i) (ii)	anode and cathode must be on electrodes			
	Any of these combinations: Group II / Halide			
	Transition metal	Hande		
	(allow Beryllium)	Fluoride		
	Magnesium	Chloride		
	Calcium	Bromide		
	Strontium	Iodide		
	Barium	Astatide		
	Radium			
	Iron(II)			
	Cobalt(II)			
	Nickel(II)			
	Copper(II)			
	Zinc			
	Lead(II)			
(ii) (iv) (v)	Must have oxidation M ²⁺ any metal from Ions need to move ions in solid cannot		1 1 1 1	
A2(a)	O and Q / O^{2+} and Q^{3+}			
(b)	M		1	
(c)	N and O			
(d)	L and P			
(e)	Q		1	
A3(a)(i)	different forms / structures / arrangement of the same atoms / element			
(ii)	many atoms bonded together / giant covalent structure / giant molecule			
(b)	The <u>layers</u> (of graphite) Can move over each other / bonding between layers is weak			
(c)	Cutting / drilling or specific example NOT gemstones / jewellery			

(b)(i)	other shell of potassium 0 to 8 electrons, outer shell fluorine 8 – with
	if inner shells shown, must be correct)
···	Charges shown correctly K ⁺ and F ⁻
(ii)	attraction between <u>ions / charges</u> / is strong or has a lattice structure
(c)	1
	Cs ₂ O Caesium hydroxide and hydrogen
(d)	Cs lower in group / reactivity increases down group IGNORE 'more reactive' / higher in ecs – too vague Page Cs electron lost more agaily / because bigger atom / more
shielding	Because Cs electron lost more easily / because bigger atom / more by inner / of outer electrons / electrons further from nucleus
A5(a)(i)	fluorine / F ₂ – NOT fluoride / F
(ii)	F reduced and H oxidised / electron transfer H to F / oxidation number
	of F decreases and H increases
	one electron transferred / F oxidation number 0 to -1 and H oxidation number 0 to $+1$
(b)(i)	3 5 3 2
	3 2 All 4 correct (2)
	2/3 correct only (1)
(ii) rea	action A produces larger <u>volume</u> of gas than reaction B / or A <u>volume</u> increases; B <u>volume</u> decreases
(c)	Temperature / pressure are not the same (as RTP) / the gases are not a
room tem	perature and pressure
A6(a)(i)	Smooth curve or line
	Plotting of points
(ii)	Check graph: +/-1 <u>– must have °C</u>
(b) C ₈ H ₁₈	Not C_nH_{2n+2} / is C_nH_{2n} / is an alkene / not enough hydrogen / should be
(c)(i)	not enough oxygen / air
(ii) (iii)	$2 C_4H_{10} + 9O_2 \rightarrow 8CO + 10 H_2O$ Correct formulae & balanced toxic / poisonous / kills if inhaled / bonds to haemoglobin Or effects on body: headaches / tiredness / brain damage
(d)	Lead / SO_2 / NO_x / unburnt hydrocarbons / soot / allow CO_2 Any 2 (2)

	3	1
(b)(i) (ii)	1	1 1
(c)	Faster <u>because</u> H ⁺ is greater / more H ⁻ More H ₂ produced	1 1 1 1
B8(a)	40 ° C +/- 5 or no air	1 1 1
(b)	Lime water / calcium hydroxide (soln)	1
(c) alcohol]	No. mols ethanol = $23/46$ (=0.5)	1 1 1
(d)	Correct structure for ethanol	1 1 1
B9(a)(i) (ii) (iii)	$\operatorname{Ca}^{2^{+}} + \operatorname{CO}_{3}^{2^{-}} \to \operatorname{CaCO}_{3}$	1 1 1
(b)(i) (ii)	(cathode) $2 \text{ H}^+ + 2\text{e}^- \rightarrow \text{H}_2$ 1 mol NaCl produces 0.5 mols Cl ₂ No. mols NaCl = 175.5 x 1000 / 58.5 (=3000)	1 1 1 1 1
(c)(i)		1 1
B10(a)(i)	Observation: Colourless to brown / orange	1 1 1
(ii)	Reagents: magnesium and copper sulphate solution Observation: brown / red-brown / pink / black (allow orange or copper coloured) metal / deposit / solid formed / blue colour fades	1 r- 1 1

XZY	1
X = Ag / Au / Pt	
Z = Zn / Cu / Fe / Sn	
Y = A1	
3 correct (2)	
2/1 correct only (1)	3
	X = Ag / Au / Pt $Z = Zn / Cu / Fe / Sn$ $Y = Al$ $3 correct (2)$