Mark scheme 5070/2 - Theory November 2001

A1(a)(i) A (aqueous sodium sulphate) and B (zinc)
(ii) (aqueous) sodium sulphate (not Copper sulphate)
(iii) $\quad \mathrm{A}$ (aqueous sodium sulphate)

4
(b)(i) anode and cathode must be on electrodes
(ii) Any of these combinations:

Group II / Transition metal	Halide
(allow Beryllium)	Fluoride
Magnesium	Chloride
Calcium	Bromide
Strontium	Iodide
Barium	Astatide
Radium	
Iron(II)	
Cobalt(II)	
Nickel(II)	
Copper(II)	
Zinc	
Lead(II)	

Must have oxidation state if transition metal is chosen
(ii) $\quad \mathrm{M}^{2+}$ any metal from before 1
(iv) Ions need to move 1
(v) ions in solid cannot move 1
$\mathrm{A} 2(\mathrm{a}) \quad \mathrm{O}$ and $\mathrm{Q} / \mathrm{O}^{2+}$ and $\mathrm{Q}^{3+} \quad 1$
(b) M 1
(c) N and O 1
(d) L and P 1
(e) Q 1

A3(a)(i) different forms / structures / arrangement of the same atoms / $\quad 1$
(ii) many atoms bonded together / giant covalent structure / giant molecule
(b) The layers (of graphite) 1

Can move over each other / bonding between layers is weak 1
(c) Cutting / drilling or specific example 1

NOT gemstones / jewellery

A4(a) K floats, (lilac / purple / pink) flame; moves around, fizzing; temp increase; melts I forms a ball; gets smaller, pops or explodes or sparks [Any 2] 2
(b)(i) other shell of potassium 0 to 8 electrons, outer shell fluorine 8 - with one different (if inner shells shown, must be correct)

Charges shown correctly K^{+}and F^{-}
(ii) attraction between ions / charges / is strong or has a lattice structure
(c) 1 1
$\mathrm{Cs}_{2} \mathrm{O}$
1
Caesium hydroxide and hydrogen 1
(d) Cs lower in group / reactivity increases down group

IGNORE 'more reactive' / higher in ecs - too vague
Because Cs electron lost more easily / because bigger atom / more
shielding by inner / of outer electrons / electrons further from nucleus
A5(a)(i) fluorine / F_{2} - NOT fluoride / F 1
(ii) $\quad \mathrm{F}$ reduced and H oxidised / electron transfer H to $\mathrm{F} /$ oxidation number
of F decreases and H increases 1
one electron transferred / F oxidation number 0 to -1 and H oxidation
number 0 to +1
(b)(i) $3 \quad 5$

32
All 4 correct (2)
$2 / 3$ correct only (1) 2
(ii) reaction A produces larger volume of gas than reaction $\mathrm{B} /$ or A volume increases; B volume decreases
(c) Temperature / pressure are not the same (as RTP) / the gases are not at room temperature and pressure

A6(a)(i) Smooth curve or line
Plotting of points
(ii) Check graph: $+/-1$-must have ${ }^{\circ} \mathrm{C} \quad 1$
(b) Not $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2} /$ is $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$ / is an alkene / not enough hydrogen / should be $\mathrm{C}_{8} \mathrm{H}_{18}$
(c)(i) not enough oxygen / air
(ii) $\quad 2 \mathrm{C}_{4} \mathrm{H}_{10}+9 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}+10 \mathrm{H}_{2} \mathrm{O}$ Correct formulae \& balanced $\quad 1$
(iii) toxic / poisonous / kills if inhaled / bonds to haemoglobin

Or effects on body: headaches / tiredness / brain damage
(d) Lead / $\mathrm{SO}_{2} / \mathrm{NO}_{x} /$ unburnt hydrocarbons / soot / allow CO_{2} Any 2 (2)

B7(a) \quad No. mols $\mathrm{HCl}=0.5 \times 10 / 1000(=0.005)$

No. mols $\mathrm{H}_{2}=\mathrm{ans} / 2 \quad 1$
Vol $\mathrm{H}_{2}=$ ans x $24 \mathrm{dm}^{3}=60 \mathrm{~cm}^{3} / 0.06 \mathrm{dm}^{3} \quad 1$
(b)(i) slows then stops / decreases to $0 \quad 1$
(ii) acid used up / acid concentration falling. NOT zinc 1
(c) $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2} \quad 1$

Faster 1
because H^{+}is greater / more $\mathrm{H}^{-} \quad 1$
More H_{2} produced 1
$\mathrm{H}_{2} \mathrm{SO}_{4}$ is dibasic / produces $2 \mathrm{H}^{+}$per molecule 1
B8(a) Yeast, (sugar), water 1
$40^{\circ} \mathrm{C}+/-5$ or no air 1
glucose \rightarrow ethanol + carbon dioxide / any named sugar $\quad 1$
(b) Lime water / calcium hydroxide (soln) 1
(c) $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2} \quad 1$

No. mols ethanol $=23 / 46(=0.5) \quad 1$ $0.5 \times 1367=683.5 \underline{\mathrm{~kJ}}$ (Ignore '-‘ sign) 1
[Mark consequentially on the given ethanol formula - it must be an alcohol]
(d) Correct structure for ethane 1

Correct structure for ethanol 1
Ethene contains double bond / unsaturated 1
B9(a)(i) precipitation, accept double decomposition 1
(ii) $\mathrm{Ca}^{2+}+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{CaCO}_{3} \quad 1$
(iii) Filtering 1
(b)(i) (anode) $\quad 2 \mathrm{Cl}^{-} \rightarrow 2 \mathrm{e}^{-}+\mathrm{Cl}_{2} \quad 1$
(cathode) $\quad 2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \quad 1$
(ii) $\quad 1 \mathrm{~mol} \mathrm{NaCl}$ produces $0.5 \mathrm{mols}_{\mathrm{Cl}}^{2} 1$

No. $\mathrm{mols} \mathrm{NaCl}=175.5 \times 1000 / 58.5(=3000) \quad 1$
Volume $\mathrm{Cl}_{2}=(3000 / 2) \times 24=36000 \mathrm{dm}^{3} \quad 1$
(c)(i) Electrons around Cl correct 1

Rest of molecule correct 1
B10(a)(i) Reagents: Chlorine soln. mixed with potassium iodide soln. 1
Observation: Colourless to brown / orange 1
Eqn: $\mathrm{Cl}_{2}+2 \mathrm{KI} \rightarrow \mathrm{I}_{2}+2 \mathrm{KCl}$ or ionic $\quad 1$
(ii) Reagents: magnesium and copper sulphate solution 1

Observation: brown / red-brown / pink / black (allow orange or copper-
coloured) metal / deposit / solid formed / blue colour fades 1
Eqn: $\mathrm{Mg}+\mathrm{CuSO}_{4} \rightarrow \mathrm{Cu}+\mathrm{MgSO}_{4}$ or ionic $\quad 1$
Negative result to confirm outcome in either case 1
(b)(i) $\quad \mathrm{X} \mathrm{Z} \mathrm{Y}$
(ii)
$\mathrm{X}=\mathrm{Ag} / \mathrm{Au} / \mathrm{Pt}$
$\mathrm{Z}=\mathrm{Zn} / \mathrm{Cu} / \mathrm{Fe} / \mathrm{Sn}$ $\mathrm{Y}=\mathrm{Al}$
3 correct (2)
2/1 correct only (1)

