CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge Ordinary Level

MARK SCHEME for the May/June 2015 series

4037 ADDITIONAL MATHEMATICS

mmn. +tremepapers.com

4037/21 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 ${\small \circledR}$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	4037	21

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

www without wrong working

1	(a)	$\frac{\log_3 x}{\log_3 27}$ $\frac{\log_3 x}{3}$ isw	M1 A1	Can use other interim bases if all correct but M1 when in base 3 only NOT $\log_3 x \div 3$
	(b)	$\log_a 15 - \log_a 3 = \log_a 5 \text{ soi}$ $\log_a 5^3 \text{ or } \log_a a$ $\log_a y = \log_a 125a \implies y = 125a$	M1 M1 A1	
2	(a)	[f(x)=]2x-4 and $[f(x)=]-2x+4$	B1,B1	Condone $y = \dots$
	(b)	y 4 0	B1 B1 B1	correct shape; y intercept marked or seen nearby; intent to tend to $y = 3$ (i.e. not tending to or cutting x -axis)
3	(a)	$\mathbf{A} = \frac{1}{4} \begin{bmatrix} 51 & -8 & 19 \\ 31 & 2 & 65 \end{bmatrix} - \begin{pmatrix} 20 & 0 & -5 \\ 15 & -10 & 25 \end{bmatrix}$	M1	
		$\mathbf{A} = \begin{pmatrix} 8 & -2 & 6 \\ 4 & 3 & 10 \end{pmatrix}$	A1	Integer values
	(b) (i)	The (total) value of the stock in each of the 3 shops	В1	Must have "each" oe
	(ii)	The total value of the stock in all 3 shops	B1	Must have "total" oe

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	4037	21

4 (i)	$\frac{PT}{8} = \tan\left(\frac{3\pi}{8}\right)$ oe	M1	$\frac{PT}{\sin\frac{3\pi}{8}} = \frac{8}{\sin\frac{\pi}{8}}$
	PT=19.3	A1	awrt 19.3
(ii)	$\frac{1}{2} \times 8^2 \times \frac{3\pi}{4} \text{oe} (75.4)$	M1	or $\frac{1}{2} \times 8^2 \times \frac{3\pi}{8}$
	$8 \tan \left(\frac{3\pi}{8}\right) \times 8 - their \text{ sector oe } (=154.5\text{-}`75.4')$	M1	$8 \times their PT - their sector$
	79.1	A1	awrt 79.1
(iii)	$8\left(\frac{3\pi}{4}\right) \text{ oe } (18.8)$	M1	
	$\left[6\pi + 16\tan\left(\frac{3\pi}{8}\right)\right] = 57.5$	A1	Accept 57.4 to 57.5
5 (a)	Permutation because the order matters oe	B1	
(b) (i)	${}^{6}C_{4} + {}^{5}C_{4} + {}^{7}C_{4}$ 55	M1 A1	3 correct terms added
(ii)	${}^{2}C_{1} \times {}^{6}C_{1} \times {}^{5}C_{1} \times {}^{7}C_{1}$ 420	M1 A1	4 correct terms multiplied
(iii)	${}^{6}C_{3} \times {}^{2}C_{1}$ or ${}^{2}C_{2} \times {}^{5}C_{1} \times {}^{6}C_{1}$	M1	for either correct product
	summation 70	M1 A1	adding two correct products
			If 0 scored, then SC1for 1,1,1,0 and 0,0,2,1 seen
6 (i)	$2t^2 - 14t + 12 = 0$	M1	Can use formula, etc.
		A1	If $t = 1$ with no working, then M1A1
(ii)	$\int (2t^{2} - 14t + 12) dt$	M1	
	$(s=)\frac{2t^3}{3} - \frac{14t^2}{2} + 12t$	A2,1,0	-1 for each error or for $+c$ left in or limits introduced
(iii)	$(a=)\frac{\mathrm{d}v}{\mathrm{d}t}$ $(4t-14)$	M1	
	[4(3) - 14 =] -2 cao	A1	
(b) (i) (ii) (iii) (iii)	${}^{6}C_{4} + {}^{5}C_{4} + {}^{7}C_{4}$ 55 ${}^{2}C_{1} \times {}^{6}C_{1} \times {}^{5}C_{1} \times {}^{7}C_{1}$ 420 ${}^{6}C_{3} \times {}^{2}C_{1} \text{ or } {}^{2}C_{2} \times {}^{5}C_{1} \times {}^{6}C_{1}$ summation 70 $2t^{2} - 14t + 12 = 0$ $(t-1)(t-6) \text{ oe}$ $(t=) 1$ $\int (2t^{2} - 14t + 12) dt$ $(s=) \frac{2t^{3}}{3} - \frac{14t^{2}}{2} + 12t$ $(a=) \frac{dv}{dt} (4t-14)$	M1 A1 M1 A1 M1 M1 A1 M1 A1 M1 A1 M1 A1	4 correct terms multiplied for either correct product adding two correct products If 0 scored, then SC1for 1,1,1,0 and 0,0,2,1 seen Can use formula, etc. If <i>t</i> = 1 with no working, then M1A1

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	4037	21

7	(a)	$\overrightarrow{AB} = 15\mathbf{b} - 5\mathbf{a} = 5(3\mathbf{b} - \mathbf{a}) \text{ or}$	B1	Any correct simplified vector
		$\overrightarrow{BC} = 24\mathbf{b} - 3\mathbf{a} - 15\mathbf{b} = 3(3\mathbf{b} - \mathbf{a})$ or	B1	Any second simplified vector
		$\overrightarrow{AC} = 24\mathbf{b} - 3\mathbf{a} - 5\mathbf{a} = 8(3\mathbf{b} - \mathbf{a})$		
		Comment: e.g. the vectors are scalar multiples of each other AND they have a common point (A, B or C as appropriate)	B1dep	Dep on both B marks being awarded.
	(b) (i)	$2\mathbf{i} + 11\mathbf{j} \text{ soi}$ $\Rightarrow \sqrt{2^2 + 11^2}$	B1	
		$\sqrt{125}$ or $5\sqrt{5}$ or 11.2 (3 s.f.) or better)	B1fT	ft their $2\mathbf{i} + 11\mathbf{j}$ (not \overrightarrow{OP} or \overrightarrow{OQ})
	(ii)	$\frac{1}{5\sqrt{5}} (2\mathbf{i} + 11\mathbf{j}) \text{ isw}$	B1fT	ft their answers from (i)
	(iii)	$\frac{\mathbf{i} - 4\mathbf{j} + 3\mathbf{i} + 7\mathbf{j}}{2} \text{or} \mathbf{i} - 4\mathbf{j} + \frac{2\mathbf{i} + 11\mathbf{j}}{2} \text{or}$	M1	
		$3\mathbf{i} + 7\mathbf{j} - \frac{2\mathbf{i} + 11\mathbf{j}}{2}$		
		2 i +1.5 j	A1	
8	(a) (i)	$ke^{4x+3} (+c)$ oe	M1	any constant, non-zero k
		$ke^{4x+3} (+c) oe$ $k = \frac{1}{4} oe$	A1	
		4	711	
	(ii)	$\frac{1}{4} \left(e^{4(3)+3} - e^{4(2.5)+3} \right) \text{ or better}$	DM1	ft their integral attempt
		706650.99 = 707000 to 3 sf or better	A1	$Accept \frac{1}{4} \left(e^{15} - e^{13} \right)$
	(b) (i)	$k\sin\left(\frac{x}{c}\right) (+c)$	M1	any constant, non-zero k
	(<i>v)</i> (1)	(3)		any constant, non-zero k
		k=3	A1	
	(ii)	$k \sin\left(\frac{x}{3}\right) (+c)$ $k = 3$ $3 \sin\left(\frac{\pi}{6} \times \frac{1}{3}\right) - 3\sin(0)$	DM1	Dep on <i>their</i> integral attempt in sin; condone omission of lower limit
		0.520944 = 0.521 to 3 sf or better	A1	Accept $3\sin\left(\frac{\pi}{18}\right)$
	(c)	$\int (x^{-2} + 2 + x^2) dx = \frac{x^{-1}}{-1} + 2x + \frac{x^3}{3}$	B1 M1 A1	Expands – accept unsimplified integration of <i>their</i> 3 term expansion Fully correct
		+ <i>c</i>	B1	+c

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	4037	21

			1	1
9	(a)	$(4x-1)(x+5) [\leqslant 0]$	M1	Solves quadratic
		critical values $\frac{1}{4}$ and -5 soi	A1	
		$-5 \leqslant x \leqslant \frac{1}{4}$	A1	Accept: $\left[-5, \frac{1}{4}\right]$; $-5 \le x$ AND $x \le 0.25$
	(b) (i)	$(x+4)^2 - 25$ or $a = 4$ and $b = -25$	B1, B1	
	(ii)	(Greatest value =) 25 $x = -4$	B1ft B1ft	Must be clear
	(iii)	9	B1	Correct shape with maximum in second quadrant and crossing positive and negative axes correctly
			B1	All 3 intercepts correctly shown on graph
10	(i)	$\ln y = \ln(Ab^x) \implies \ln y = \ln A + \ln b^x$	M1	
	(1)	$\Rightarrow \ln y = \ln A + x \ln b$	A1	
	(ii)	$\ln A = 11.4 \Rightarrow A = e^{their 11.4}$	M1	condone misread of scale for M1 (11.2 only)
		A = 90000 cao $\ln b = -1$ b = 0.4 cao	A1 M1 A1	Allow awrt –1
	(iii)	$x = 2.5 \Rightarrow \ln y = 9$ y = e ⁹ or 8000 to 1 sf		Allow awrt 8100
11	(i)	7 - x, x, 6 - x oe	B1	
		their attempt at $7-x+x+6-x+16=25$ oe	M1	
		x = 4	A1	Condone $x = 4$ for all 3 marks
	(ii)	23 - y, y, 9 - y oe	B1	or $n(A \cup C) = 48 - 16 = 32$
		48 = 30 + 25 + 15 - 7 - 6 - (their 4 + y) + their 4 oe soi	M1	or $32 = 30 + 15 - (their 4 + y)$ or $48 = (23 - y) + 3 + 16 + y + 4$ + 2 + (9 - y)
		y = 9	A1	Condone $y = 9$ for all 3 marks
	(iii)	$n(C) = 15 \text{ and } y + n(B \cap C) = 9 + 6 = 15$ [and so $A' \cap B' \cap C = \emptyset$].	B1	or equivalent deduction