CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge Ordinary Level

MARK SCHEME for the May/June 2015 series

4037 ADDITIONAL MATHEMATICS

mmn. +tremepapers.com

4037/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 ${\small \circledR}$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	4037	12

Abbreviations

awrt	answers which round to
cao	correct answer only
don	danandant

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

www without wrong working

1	$k^{2} - 4(2k+5)$ (< 0) $k^{2} - 8k - 20$ (< 0)	M1	use of $b^2 - 4ac$, (not as part of quadratic formula unless isolated at a later stage) with correct values for a , b and c
	(k-10)(k+2) (< 0)	3.64	Do not need to see < at this point
		M1 A1	attempt to obtain critical values correct critical values
	critical values of 10 and -2 -2 < k < 10	A1	correct critical values
	-2 < k < 10	Ai	correct range
	Alternative 1:		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2(2k+5)x+k$	M1	attempt to differentiate, equate to zero and substitute <i>x</i> value back in to obtain a <i>y</i> value
	When $\frac{dy}{dx} = 0$, $x = \frac{-k}{2(2k+5)}$, $y = \frac{8k+20-k^2}{4(2k+5)}$	M1	consider $y = 0$ in order to obtain critical values
	When $y = 0$, obtain critical values of 10 and -2	A1	correct critical values
	-2 < k < 10	A1	correct range
	Alternative 2:		
	$y = (2k+5)\left(\left(x + \frac{k}{2(2k+5)}\right)^2 - \frac{k^2}{4(2k+5)}\right) + 1$	M1	attempt to complete the square and consider $1 - \frac{k^2}{4(2k+5)}$
	Looking at $1 - \frac{k^2}{4(2k+5)} = 0$ leads to	M1	attempt to solve above = to 0, to obtain critical values
	critical values of 10 and –2	A1	correct critical values
	-2 < k < 10	A1	correct range

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	4037	12

		ı	T
2	$\frac{\tan\theta + \cot\theta}{\csc\theta} = \frac{\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}}{\frac{1}{\sin\theta}}$	M1	for $\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\cot \theta = \frac{\cos \theta}{\sin \theta}$ and $\csc \theta = \frac{1}{\sin \theta}$; allow when used
	$= \frac{\frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta}}{\frac{1}{\sin \theta}}$	M1	dealing correctly with fractions in the numerator; allow when seen
	$=\frac{1}{\cos\theta}$	M1	use of the appropriate identity; allow when seen
	$= \sec \theta$	A1	must be convinced it is from completely correct work (beware missing brackets)
	Alternative:		
	$\frac{\tan\theta + \cot\theta}{\csc\theta} = \frac{\frac{\tan^2\theta + 1}{\tan\theta}}{\csc\theta}$	M1	for either $\tan \theta = \frac{1}{\cot \theta}$ or $\cot \theta = \frac{1}{\tan \theta}$ and $\csc \theta = \frac{1}{\sin \theta}$; allow when used
			$\cot \theta = \frac{1}{\tan \theta}$ and
	$=\frac{\sec^2\theta}{\tan\theta\frac{1}{\sin\theta}}$	M1	$\csc\theta = \frac{1}{\sin\theta}$; allow when used dealing correctly with fractions in numerator; allow when seen
	$=\frac{\sec^2\theta}{\sec\theta}$	M1	use of the appropriate identity; allow when seen
	$= \sec \theta$	A1	must be convinced it is from completely correct work
3	$\mathbf{A}^{-1} = \frac{1}{2} \begin{pmatrix} 3 & -2 \\ -5 & 4 \end{pmatrix}$	B1	$\frac{1}{2}$ multiplied by a matrix
	,	B1	for matrix
	$ \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 3 & -2 \\ -5 & 4 \end{pmatrix} \begin{pmatrix} 8 \\ 9 \end{pmatrix} $	M1	attempt to use the inverse matrix, must be pre-multiplication
	$ \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 6 \\ -4 \end{pmatrix} $ $ x = 3, y = -2 $		
	x = 3, y = -2	A1, A1	
L		<u> </u>	<u>l</u>

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	4037	12

			Ī	
4	(i)	Area = $ \left(\frac{1}{2} \times 12^2 \times 1.7 \right) + \left(\frac{1}{2} \times 12^2 \sin(2\pi - 1.7 - 2.4) \right) $	B1,B1	B1 for sector area, allow unsimplified B1 for correct angle <i>BOC</i> , allow unsimplified correct attempt at area of triangle,
		= awrt 181	A1	allow unsimplified using <i>their</i> angle <i>BOC</i> (Their angle <i>BOC</i> must not be 1.7 or 2.4)
	(ii)	$BC^{2} = 12^{2} + 12^{2} - (2 \times 12 \times 12\cos 2.1832)$ or $BC = 2 \times 12 \times \sin\left(\frac{2\pi - 4.1}{2}\right)$	M1	correct attempt at <i>BC</i> , may be seen in (i), allow if used in (ii). Allow use of <i>their</i> angle <i>BOC</i> .
		BC = 21.296	A1	
		Perimeter = $(12 \times 1.7) + 12 + 12 + 21.296$	B1 M1	for arc length, allow unsimplified for a correct 'plan' (an arc + 2 radii and BC)
		= 65.7	A1	
	(a) (b)	20160	D1	
5	(a) (i)	20160	B1	
	(ii)	$3 \times {}^{6}P_{4} \times 2$ $= 2160$	B1,B1	B1 for ⁶ P ₄ (must be seen in a product) B1 for all correct, with no further working
	(iii)	$5 \times 2 \times {}^{6}P_{4}$ $= 3600$	B1,B1 B1	B1 for ⁶ P ₄ (must be seen in a product) B1 for 5 (must be in a product)
				B1 for all correct, with no further working
		Alternative 1: ${}^{6}C_{4} \times 5! \times 2$	B2	for ${}^6C_4 \times 5!$
		= 3600	B1	for ${}^6C_4 \times 5! \times 2$
		Alternative 2:		
		$\left({}^{7}P_{5}-{}^{6}P_{5}\right)\times2$	B2	for $\left({}^{7}P_{5} - {}^{6}P_{5}\right)$
		= 3600	B1	for $(^7P_5 - ^6P_5) \times 2$
		Alternative 3:		
		$2!(^{6}P_{4} + (^{6}P_{1} \times ^{5}P_{3}) + (^{6}P_{2} \times ^{4}P_{2}) + (^{6}P_{3} \times ^{3}P_{1}) + ^{6}P_{4})$	B2	4 terms correct or omission of 2! in
		= 3600	B1	each term all correct

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	4037	12

(b) (i)	$^{14}C_4 \times ^{10}C_4 \text{or} ^{14}C_8 \times ^8C_4$ (or numerical or factorial equivalent) $= 210210$	B1,B1	B1 for either ${}^{14}C_4$ or ${}^{14}C_8$ as part of a product B1 for correct answer, with no further working
(ii)	${}^{8}C_{4} \times {}^{6}C_{4}$ = 1050	B1,B1	B1 for either 8C_4 or 6C_4 as part of a product B1 for correct answer with no further working
6 (i)	10ln4 or 13.9 or better	B1	
(ii)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t} = \right) \frac{20t}{t^2 + 4} - 4$		attempt to differentiate and equate to zero $\frac{20t}{t^2 + 4}$ or equivalent seen
	When $\frac{dx}{dt} = 0$, $\frac{20t}{t^2 + 4} = 4$ leading to $t^2 - 5t + 4 = 0$ t = 1, t = 4	DM1	attempt to solve their $\frac{dx}{dt} = 0$, must be a 2 or 3 term quadratic equation with real roots for both

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	4037	12

(iii)	$If (v =) \frac{20t}{t^2 + 4} - 4$		
	$(a=) \frac{20(t^2+4)-20t(2t)}{(t^2+4)^2}$	M1	attempt to differentiate their $\frac{dx}{dt}$
		A1 A1	$20(t^2+4)$ $20t(2t)$
	$20(4-t^2)$ or $80-20t^2$ or $4-t^2$ or equivalent	A1	$20(4-t^2) \text{ or } 80-20t^2 \text{ or } 4-t^2$
	expression involving $-t^2$	B1	t = 2, dependent on obtaining first
	When acceleration is 0 , $t = 2$ only	ы	and second A marks
	Alternative 1 for first 3 marks:		d.,
	$If(v =) \frac{20t - 4t^2 - 16}{t^2 + 4}$	M1	attempt to differentiate their $\frac{dx}{dt}$
	$(a=)\frac{(t^2+4)(20-8t)-(20t-4t^2-16)(2t)}{(t^2+4)^2}$	A1	for $(t^2 + 4)(20 - 8t)$ for $(20t - 4t^2 - 16)(2t)$
	$\left(t^2+4\right)^2$	A1	for $(20t - 4t^2 - 16)(2t)$
	Alternative 2 for M1 mark: If $(v =) 20t(t^2 + 4)^{-1} - 4$		
	$(a =) 20t (-2t(t^2 + 4)^{-2}) + 20(t^2 + 4)^{-1}$	M1	attempt to differentiate their $\frac{dx}{dt}$
	Alternative 3 for the first 3 marks $\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right$		
	If $(v =) (20t - 4t^2 - 16)(t^2 + 4)^{-1}$ $(a =) (20t - 4t^2 - 16)(-2t(t^2 + 4)^{-2}) + (20 - 8t)(t^2 + 4)^{-1}$	M1	attempt to differentiate <i>their</i> $\frac{dx}{dt}$
	Numerator = $-2t(20t - 4t^2 - 16) + (20 - 8t)(t^2 + 4)$	A1 A1	for $2t(20t - 4t^2 - 15)$ for $(20 - 8t)(t^2 + 4)$
7 (i)	$\overrightarrow{DA} = 3\mathbf{a} - \mathbf{b}$	B1	mark final answer, allow unsimplified
(ii)	$\overrightarrow{DB} = 7\mathbf{a} - \mathbf{b}$	B1	mark final answer, allow unsimplified
(iii)	$\overrightarrow{AX} = \lambda \left(4\mathbf{a} + \mathbf{b} \right)$	B1	mark final answer, allow unsimplified
(iv)	$\overrightarrow{DX} = 3\mathbf{a} - \mathbf{b} + \lambda \left(4\mathbf{a} + \mathbf{b} \right)$	M1	their (i) + their (iii) or equivalent valid method or 3a - b + their (iii)
		A1	Allow unsimplified

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	4037	12

(v)	$3\mathbf{a} - \mathbf{b} + \lambda (4\mathbf{a} + \mathbf{b}) = \mu (7\mathbf{a} - \mathbf{b})$ Equate like vectors: $3 + 4\lambda = 7\mu$ $-1 + \lambda = -\mu$ leads to $\lambda = \frac{4}{11}$, $\mu = \frac{7}{11}$	M1 DM1 A1,A1	equating their (iv) and $\mu \times$ their (ii) for an attempt to equate like vectors and attempt to solve 2 linear equations for λ and μ
8 (i)	$5e^{2x} - \frac{1}{2}e^{-2k} (+c)$	B1, B1	B1 for each term, allow unsimplified
(ii)	$\left(5e^{2k} - \frac{1}{2}e^{-2k}\right) - \left(5e^{-2k} - \frac{1}{2}e^{2k}\right)$	M1	use of limits provided integration has taken place. Signs must be correct if brackets are not included. allow any correct form
(iii)	$ \left(5e^{2k} - \frac{1}{2}e^{-2k}\right) \left(5e^{-2k} - \frac{1}{2}e^{2k}\right) = -60 $ or $ \frac{11}{2}e^{2k} - \frac{11}{2}e^{-2k} = -60 $	B1	correct expression from (ii) either simplified or unsimplified equated to – 60, must be first line seen.
	or equivalent leading to $11e^{2k} - 11e^{-2k} + 120 = 0$	DB1	must be convinced as AG
(iv)	$11y^{2} + 120y - 11 = 0$ $(11y - 1)(y + 11) = 0$ leading to $k = \frac{1}{2} \ln \frac{1}{11}, \ln \frac{1}{\sqrt{11}}, -\ln \sqrt{11}, -\frac{1}{2} \ln 11$	M1 DM1 A1	attempt to obtain a quadratic equation in y or e^{2k} and solve to get y or e^{2k} (only need positive solution) attempt to deal with e to get $k = 1$. any of given answers only.

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	4037	12

9	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4 - 6\sin 2x$	M1,A1	M1 for attempt to differentiate A1 for all correct
	When $x = \frac{\pi}{4}$, $y = \pi$	B1	for y
	$\frac{dy}{dx} = -2$ so gradient of normal $= \frac{1}{2}$	DM1	for substitution of $x = \frac{\pi}{4}$ into <i>their</i>
			$\frac{dy}{dx} \text{ and use of '} m_1 m_2 = -1',$ dependent on first M1
	Normal equation $y - \pi = \frac{1}{2} \left(x - \frac{\pi}{4} \right)$	DM1	correct attempt to obtain the equation of the normal, dependent on previous DM mark
	When $x = 0$, $y = \frac{7\pi}{8}$	A1	must be terms of π
	When $y = 0, x = -\frac{7\pi}{4}$	A1	must be terms of π
	$Area = \frac{1}{2} \times \frac{7\pi}{4} \times \frac{7\pi}{8} = \frac{49\pi^2}{64}$	B1ft	Follow through on <i>their x</i> and <i>y</i> intercepts; must be exact values
10 (a)	$\cos^2 3x = \frac{1}{2}, \qquad \cos 3x = (\pm)\frac{1}{\sqrt{2}}$		
10 (a)	$3x = 45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$	M1	complete correct method, dealing
	$x = 15^{\circ}, 45^{\circ}, 75^{\circ}, 105^{\circ}$	A1,A1	with sec and 3, correctly A1 for each correct pair
(b)	$3(\cot^{2} y + 1) + 5\cot y - 5 = 0$ Leading to $3\cot^{2} y + 5\cot y - 2 = 0 \text{ or}$	M1	use of a correct identity to get an equation in terms of one trig ratio only
	$2\tan^2 y - 5\tan y - 3 = 0$ $(3\cot y - 1)(\cot y + 2) = 0 \text{ or}$ $(\tan y - 3)(2\tan y + 1) = 0$	M1	for $\cot y = \frac{1}{\tan y}$ to obtain either a quadratic equation in $\tan y$ or solutions in terms of $\tan y$; allow where appropriate
	$\tan y = 3, \tan y = \frac{1}{2}$	M1	for solution of a quadratic equation in terms of either tan y or cot y
	$y = 71.6^{\circ}, 251.6^{\circ}$ $153.4^{\circ}, 333.4^{\circ}$	A1,A1	A1 for each correct 'pair'
(c)	$\sin\left(z + \frac{\pi}{3}\right) = \frac{1}{2}$	M1	completely correct method of solution
	$z + \frac{\pi}{3} = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}$	A1	one correct solution in range
	$z = \frac{\pi}{2}, \frac{11\pi}{6}$	M1	correct attempt to obtain a second solution within the range
	(allow 1.57, 5.76)	A1	second correct solution (and no other)