CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge Ordinary Level

MARK SCHEME for the May/June 2015 series

4037 ADDITIONAL MATHEMATICS

4037/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge O Level – May/June 2015	4037	11

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

1 (i)	180° or π radians or 3.14 radians (or better)	B 1	
(ii)	2	B 1	
(iii) (a)		B1	$y = \sin 2x$ all correct
(b)		B1 B1	for either $\uparrow \downarrow \uparrow$ starting at their highest value and ending at their lowest value Or a curve with highest value at $y = 3$ and lowest value at $y = -1$ completely correct graph
(iv)	3	B 1	
2 (i)	$\tan \theta = \frac{(8+5\sqrt{2})(4-3\sqrt{2})}{(4+3\sqrt{2})(4-3\sqrt{2})}$ $= \frac{32-24\sqrt{2}+20\sqrt{2}-30}{16-18}$ $= 1+2\sqrt{2} \text{cao}$	M1 A1	attempt to obtain $\tan \theta$ and rationalise. Must be convinced that no calculators are being used

	Page 3	Mark Scheme	Syllabus Paper	
		Cambridge O Level – May/June	2015	4037 11
	(ii)	$\sec^2 \theta = 1 + \tan^2 \theta$		
		$=1+(-1+2\sqrt{2})^{2}$	M1	attempt to use $\sec^2 \theta = 1 + \tan^2 \theta$, with <i>their</i> answer to (i)
		$=1+1-4\sqrt{2}+8$	DM1	attempt to simplify, must be convinced no calculators are being used.
		$=10-4\sqrt{2}$	A1	Need to expand $(-1+2\sqrt{2})^2$ as 3 terms
		Alternative solution:		
		$AC^{2} = \left(4 + 3\sqrt{2}\right)^{2} + \left(8 + 5\sqrt{2}\right)^{2}$		
		$= 148 + 104\sqrt{2}$		
		$\sec^2 \theta = \frac{148 + 104\sqrt{2}}{\left(4 + 3\sqrt{2}\right)^2}$	M1	
		$=\frac{148+104\sqrt{2}}{\left(4+3\sqrt{2}\right)^2}\times\frac{34-24\sqrt{2}}{34-24\sqrt{2}}$	DM1	
		$=10-4\sqrt{2}$	A1	
3	(i)	$64 + 192x^2 + 240x^4 + 160x^6$	B3,2,1,0	-1 each error
	(ii)	$(64+192x^2+240x^4)\left(1-\frac{6}{x^2}+\frac{9}{x^4}\right)$	B1	expansion of $\left(1-\frac{3}{x^2}\right)^2$
		Terms needed $64 - (192 \times 6) + (240 \times 9)$	M1	attempt to obtain 2 or 3 terms using
		= 1072	A1	

	Page 4	Mark Scheme	Syllabus	Paper		
		Cambridge O Level – May/June	2015		4037	11
4	(a) (b)	$\mathbf{X}^{2} = \begin{pmatrix} 4 - 4k & -8 \\ 2k & -4k \end{pmatrix}$ Use of $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$ $\begin{pmatrix} a & 1 \\ b & 5 \end{pmatrix} \begin{bmatrix} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{2} & \frac{1}{2} \end{bmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	B2,1,0 M1	-1 each inc use of AA^{-1} obtain at le	nt ttempt to ion.	
		Any 2 equations will give $a = 2, b = 4$	A1,A1			
		Alternative method 1: $\frac{1}{5a-b} \begin{pmatrix} 5 & -1 \\ b & a \end{pmatrix} = \begin{pmatrix} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{3} & \frac{1}{3} \end{pmatrix}$ Compare any 2 terms to give $a = 2, b = 4$ Alternative method 2:	M1 A1,A1	correct atte comparisor	mpt to obtair 1 of at least o	\mathbf{A}^{-1} and ne term.
		Inverse of $\frac{1}{6} \begin{pmatrix} 5 & -1 \\ -4 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 4 & 5 \end{pmatrix}$	M1 A1,A1	reasoning a	nd attempt a	t inverse
5		$3x-1 = x(3x-1) + x^{2} - 4 \text{ or}$ $y = \left(\frac{y+1}{3}\right)y + \left(\frac{y+1}{3}\right)^{2} - 4$ $4x^{2} - 4x - 3 = 0 \text{ or } 4y^{2} - 4y - 35 = 0$ $(2x-3)(2x+1) = 0 \text{ or } (2y-7)(2y+5) = 0$ leading to $x = \frac{3}{2}, x = -\frac{1}{2}$ and $y = \frac{7}{2}, y = -\frac{5}{2}$ Midpoint $\left(\frac{1}{2}, \frac{1}{2}\right)$ Perpendicular gradient $= -\frac{1}{3}$ Perp bisector: $y - \frac{1}{2} = -\frac{1}{3}\left(x - \frac{1}{2}\right)$ $(3y+x-2=0)$	M1 DM1 A1 A1 B1 M1 M1 A1	equate and equation in forming a 3 and attemp x values y values for midpoin correct atte of the perpe- straight line midpoint; r perpendicu allow unsir	attempt to of 1 variable 5 term quadra t to solve nt, allow any mpt to obtain endicular, usi e equation the nust be convi- lar gradient. nplified	otain an tic equation where a the gradient ing AB rough the inced it is a
			AI	anow unsir	npinnea	

	Page 5	Mark Scheme	Syllabus	Paper		
		Cambridge O Level – May/June 2015			4037	11
			Г			
6	(i)	$f\left(\frac{1}{2}\right) = \frac{a}{8} - \frac{15}{4} + \frac{b}{2} - 2 = 0$	M1	correct use	of either $f(\cdot)$	$\left(\frac{1}{2}\right)$ or f(1)
		leading to $a + 4b = 46$ f(1) = $a - 15 + b - 2 = 5$		paired corre	ectly	
		leading to $a + b = 22$	A1	both equations correct (allow unsimplified)		
		giving $b=8$ (AG), $a=14$	M1,A1	M1 for solution of equations A1 for both <i>a</i> and <i>b</i> . AG for <i>b</i> .		
	(ii)	$(2x-1)(7x^2-4x+2)$	M1,A1	M1 for valid attempt to obtain $g(x)$, be either observation or by algebraic londivision.		
	(iii)	$7x^2 - 4x + 2 = 0$ has no real solutions as	M1	use of $b^2 - 4ac$		
		16 < 56	A1	correct concorrect $g(x)$	clusion; mus or $2g(x)$ v	t be from a
		$dy = \frac{(x-1)\frac{8x}{(4x^2+2)} - \ln(4x^2+3)}{(4x^2+3)}$	M1	differentiation of a quotient (or product)		
7	(i)	$\frac{dy}{dx} = \frac{(4x + 2)}{(x-1)^2}$	B1 A1	correct difference all else correct	erentiation o ect	$f \ln(4x^2 + 3)$
		When $x = 0$, $y = -\ln 3$ oe	B1	for <i>y</i> value		
		$\frac{dy}{dx} = -\ln 3$ so gradient of normal is $\frac{1}{\ln 3}$ (allow numerical equivalent)	M1	valid attem normal	pt to obtain g	gradient of the
		normal equation $y + \ln 3 = \frac{1}{\ln 3}x$	M1	attempt at r	ormal equat	ion must be
		or $y = 0.910x - 1.10$, or $y = \frac{10}{11}x - \frac{11}{10}$ cao	A1			
	(ii)	(Anow $y = 0.91x - 1.1$) when $x = 0$, $y = -\ln 3$ when $y = 0$, $x = (\ln 3)^2$	M1	valid attempt at area		
		Area = ± 0.66 or ± 0.67 or awrt these or $\frac{1}{2}(\ln 3)^3$	A1			

	Page 6	Mark Scheme	Syllabus Paper			
		Cambridge O Level – May/June	2015	4037 11		
				Γ		
8	(i)	Range for f: $y \ge 3$	B1			
		Range for g: $v \ge 9$	B 1			
	(ii)	$x = -2 + \sqrt{y - 5}$	M1	attempt to obtain the inverse function		
		$g^{-1}(x) = -2 + \sqrt{x-5}$	A1	Must be correct form		
		Domain of σ^{-1} : r > 9	B1	for domain		
		Alternative method:				
		$v^2 + 4v + 9 - x = 0$	M1	attempt to use quadratic formula and		
		$-4 + \sqrt{16 - 4(9 - r)}$		find inverse		
		$y = \frac{-4 + \sqrt{10 - 4(y - x)}}{2}$	Al	must have + not \pm		
		2				
	(iii)	Need $g(3e^{2x})$	M1	correct order		
		$(3e^{2x}+2)^2+5=41$	DM1	correct attempt to solve the equation		
		or $9e^{4x} + 12e^{2x} - 32 = 0$				
		$(3e^{2x}-4)(3e^{2x}+8)=0$				
			2.54			
		leading to $3e^{2x} + 2 = \pm 6$ so $x = -\ln - \frac{1}{2}$	MI	dealing with the exponential correctly		
				In order to reach a solution for x		
		or $e^{2x} = \frac{4}{3}$ so $x = \frac{1}{3} \ln \frac{4}{3}$	A1	Allow equivalent logarithmic forms		
		3 2 3				
		Alternative method:				
		Using $f(r) = \sigma^{-1}(41)$, $\sigma^{-1}(41) = 4$	M1	correct use of g^{-1}		
			DM1	dealing with $a^{-1}(41)$ to obtain an		
		leading to $3e^{2x} = 4$, so $x = \frac{1}{2} \ln \frac{4}{3}$	DIVII	dealing with g (41) to obtain an		
		2.5	M1	equation in terms of e^{2x}		
			A1	in order to reach a solution for r		
				Allow equivalent logarithmic forms		
	(iv)	$g'(x) = 6e^{2x}$	B 1	B1 for each		
		$g'(\ln 4) = 96$	B 1			

Page 7Mark SchemeSyllabusPaperCambridge O Level – May/June 2015403711

9 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 10x + 3$	M1	for differentiation
	When $x = 0$, for curve $\frac{dy}{dx} = 3$,	. 1	a succession of the state of the state
	gradient of line also 3 so line is a tangent.	AI	comparing both gradients
	Alternate method: $3x + 10 = x^3 - 5x^2 + 3x + 10$	M1	attempt to deal with simultaneous
	leading to $x^2 = 0$, so tangent at $x = 0$	A1	obtaining $x = 0$
(ii)	When $\frac{dy}{dx} = 0$, $(3x-1)(x-3) = 0$	M1	equating gradient to zero and valid attempt to solve
	$x = \frac{1}{3}, x = 3$	A1,A1	A1 for each
(iii)	Area = $\frac{1}{2}(10+19)3 - \int_0^3 x^3 - 5x^2 + 3x + 10dx$	B 1	area of the trapezium
	$=\frac{87}{2} - \left[\frac{x^4}{4} - \frac{5x^3}{3} + \frac{3x^2}{2} + 10x\right]_0^3$	M1	attempt to obtain the area enclosed by the curve and the coordinate axes, by
	$=\frac{87}{2} - \left(\frac{81}{4} - 45 + \frac{27}{2} + 30\right)$	A1 DM1	integration integration all correct correct application of limits (must be using <i>their</i> 3 from (ii) and 0)
	= 24.7 or 24.8	A1	
	Alternative method:		
	Area = $\int_0^3 (3x+10) - (x^3 - 5x^2 + 3x + 10) dx$ = $\int_0^3 -x^3 + 5x^2 dx$	B1 M1 A1	correct use of ' <i>Y</i> – <i>y</i> ' attempt to integrate integration all correct
	$= \left[-\frac{x^4}{4} + \frac{5x^3}{3} \right]_0^3 = \frac{99}{4}$	DM1 A1	correct application of limits
10 (a)	$\sin^2 x = \frac{1}{4}$		
	$\sin x = (\pm)\frac{1}{2}$	M1	using $\operatorname{cosec} x = \frac{1}{\sin x}$ and obtaining
	<i>x</i> = 30°, 150°, 210°, 330°	A1,A1	$\sin x =$ A1 for one correct pair, A1 for another correct pair with no extra solutions

Page 8	Mark Scheme			Syllabus	Paper	
	Cambridge O Level – May/June	2015		4037	11	
(b)	$(\sec^{2} 3y - 1) - 2\sec 3y - 2 = 0$ $\sec^{2} 3y - 2\sec 3y - 3 = 0$	M1 M1	use of the c	correct identi	ty m quadrati	c
	$(\sec 3y + 1)(\sec 3y - 3) = 0$ leading to $\cos 3y = -1$, $\cos 3y = \frac{1}{3}$	M1	equation in sec 3y and attempt to so dealing with sec and 3y correctly			olve
	3y = 180°, 540° 3y = 70.5°, 289.5°, 430.5° y = 60°, 180°, 23.5°, 96.5°, 143.5°	A1,A1 A1	A1 for a co correct pair and no othe	prrect pair, A r, A1 for corr er within the	1 for a seco rect 5 th solu range	ond tion
	Alternative 1: $\sec^2 3v - 2\sec 3v - 3 = 0$	M1	use of the c	correct identi	ty	
	leading to $3\cos^2 3y + 2\cos 3y - 1$	M1	attempt to o	obtain a quad	Iratic equat	ion
	$(3\cos y - 1)(\cos y + 1) = 0$	M1	dealing wit A marks as	the attempt to the 3y correctly above	solve y	
	Alternative 2: $\frac{\sin^2 y}{\cos^2 y} - \frac{2}{\cos y} - 2 = 0$ $(1 - \cos^2 x) - 2\cos x - 2\cos^2 x = 0$	M1	use of the c $\tan y = \frac{\sin}{\cos x}$ as before	correct identi $\frac{y}{3y}$ and sec y	ty, $=\frac{1}{\cos y}, \text{ th}$	nen
(c)	$z - \frac{\pi}{3} = \frac{\pi}{3}, \frac{4\pi}{3}$	M1	correct ord	er of operatio	ons	
	$z = \frac{2\pi}{3}, \frac{5\pi}{3}$ or 2.09 or 2.1, 5.24	A1,A1	A1 for a co A1 for a se no other wi	orrect solution cond correct ithin the rang	n solution ar ge	nd