

Paper 1

May/June 2014 2 hours

Candidates answer on the Question Paper.

No additional materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. The use of an electronic calculator is expected, where appropriate. You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 80.

This document consists of **15** printed pages and **1** blank page.

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

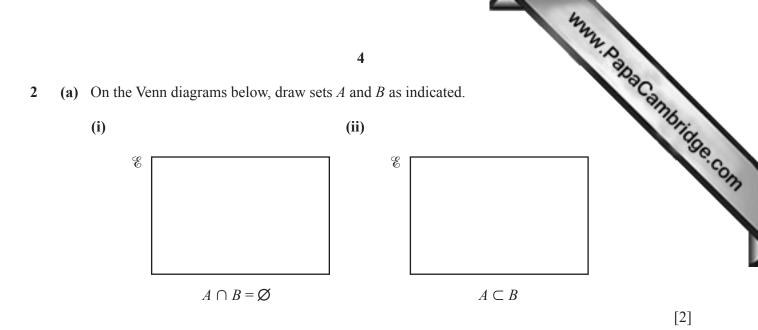
Binomial Theorem

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)!r!}$

2. TRIGONOMETRY

Identities


$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\csc^2 A = 1 + \cot^2 A$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2} bc \sin A$$

www.papacambridge.com $\frac{\cos A}{1+\sin A} + \frac{1+\sin A}{\cos A}$ can be written in the form $p \sec A$, where p is an integration of $p \sec A$, where p is an integration of $p \sec A$. 1 Show that found.

3

- (b) The universal set \mathscr{C} and sets P and Q are such that $n(\mathscr{C}) = 20$, $n(P \cup Q) = 15$, n(P) = 13 and $n(P \cap Q) = 4$. Find
 - (i) n(Q), [1]

(ii)
$$n((P \cup Q)')$$
,

[1]

(iii) $n(P \cap Q')$.

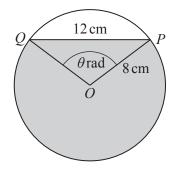
[1]

www.papacambridge.com (i) Sketch the graph of y = |(2x+1)(x-2)| for $-2 \le x \le 3$, showing the coordinat 3 points where the curve meets the *x*- and *y*-axes.

(ii) Find the non-zero values of k for which the equation |(2x+1)(x-2)| = k has two solutions only. [2]

www.papaCambridge.com The region enclosed by the curve $y = 2 \sin 3x$, the x-axis and the line x = a, where 4 0 < a < 1 radian, lies entirely above the *x*-axis. Given that the area of this region is $\frac{1}{3}$ square find the value of *a*.

5 (i) Given that
$$2^{5x} \times 4^y = \frac{1}{8}$$
, show that $5x + 2y = -3$.


(ii) Solve the simultaneous equations
$$2^{5x} \times 4^y = \frac{1}{8}$$
 and $7^x \times 49^{2y} = 1$. [4]

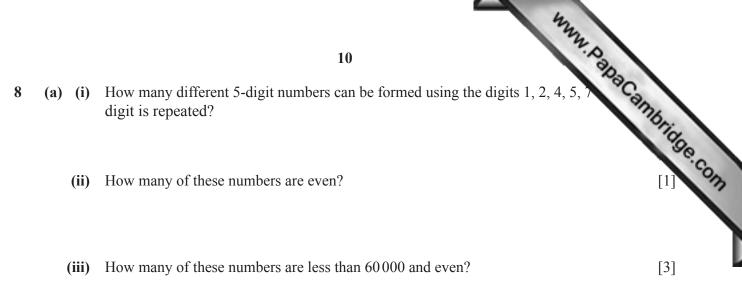
www.papacambridge.com (a) Matrices X, Y and Z are such that $\mathbf{X} = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$, $\mathbf{Y} = \begin{pmatrix} 1 & 3 \\ 4 & 5 \\ 6 & 7 \end{pmatrix}$ and $\mathbf{Z} = (1 \ 2 \ 3)$. Write 6

down all the matrix products which are possible using any two of these matrices. Do not evaluate these products.

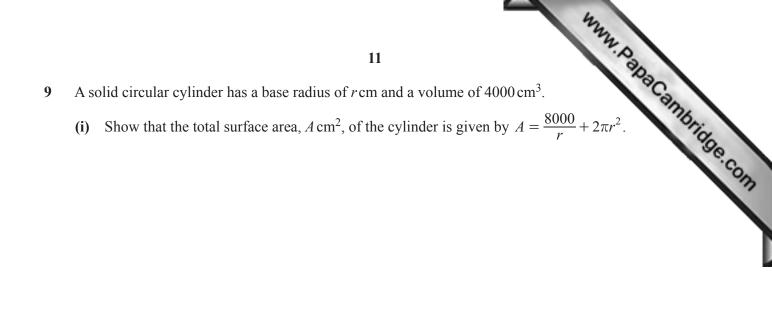
(b) Matrices **A** and **B** are such that $\mathbf{A} = \begin{pmatrix} 5 & -2 \\ -4 & 1 \end{pmatrix}$ and $\mathbf{AB} = \begin{pmatrix} 3 & 9 \\ -6 & -3 \end{pmatrix}$. Find the matrix **B**. [5]

www.papacambridge.com 7 The diagram shows a circle, centre O, radius 8 cm. Points P and Q lie on the circle such the PQ = 12 cm and angle $POQ = \theta$ radians.

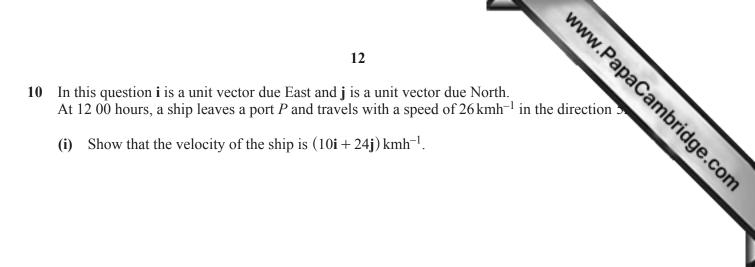
(i) Show that $\theta = 1.696$, correct to 3 decimal places.


(ii) Find the perimeter of the shaded region.

(iii) Find the area of the shaded region.


[3]

[2]


[3]

(b) How many different groups of 6 children can be chosen from a class of 18 children if the class contains one set of twins who must not be separated? [3]

(ii) Given that *r* can vary, find the minimum total surface area of the cylinder, justifying that this area is a minimum. [6]

(ii) Write down the position vector of the ship, relative to *P*, at 16 00 hours. [1]

(iii) Find the position vector of the ship, relative to P, t hours after 16 00 hours.

[2]

- At 16 00 hours, a speedboat leaves a lighthouse which has position vector $(120\mathbf{i} + 81\mathbf{j})$ km, relative to *P*, to intercept the ship. The speedboat has a velocity of $(-22\mathbf{i} + 30\mathbf{j})$ kmh⁻¹.
- (iv) Find the position vector, relative to P, of the speedboat t hours after 16 00 hours. [1]

www.papaCambridge.com (v) Find the time at which the speedboat intercepts the ship and the position vector, relation the point of interception.

11 (a) Solve $\tan^2 x + 5 \tan x = 0$ for $0^\circ \le x \le 180^\circ$.

14

(b) Solve $2\cos^2 y - \sin y - 1 = 0$ for $0^\circ \le y \le 360^\circ$.

[4]

(c) Solve $\sec\left(2z-\frac{\pi}{6}\right)=2$ for $0 \le z \le \pi$ radians.

BLANK PAGE

16

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.