CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the October/November 2013 series

4037 ADDITIONAL MATHEMATICS

www.tiremepapers.com

4037/13

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	4037	13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.

When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

	Page 3 Mark Scher		eme		Syllabus	Paper	
		GCE O LEVEL – October/Novem			r 2013	4037	13
				[
1	(i) ${}^{6}C_{2}(2^{4})(px)^{2} \text{ or } \binom{6}{2} 2^{4}(px)^{2}$		B1	Seen or implied, unsimplified			
	$240p^2 = 60$			M1	M1 for their coefficient of $x^2 = 60$ and attempt to solve		
		$p = \frac{1}{2}$		A1 [3]	10 50170		
	(ii) coefficients of the terms needed		M1	M1 for rea	alising that 2 terms	are involved	
		$(-1)^{6}C_{1}(2)$	$(2)^5 p + (3 \times 60)$	B1	B1 for (-1	$^{6}C_{1}(2)^{5} p \text{ or } -192$	2p, using their p.
		= 84		A1			
				[3]			
2		$\lg \frac{y^2}{5y+60}$	$\frac{1}{0} = lg10$	B1 B1	B1 for 2 l B1 for 1 =	$g y = \lg y^2$ = lg10 or equivalent	, allow when seen
	Or	$\lg y^2 = \lg 1$	10(5y+60)	M1	M1 for us or log <i>A</i> +	$e \text{ of } \log A - \log B = 1$ $\log B = \log AB$	logA/B
		$y^2 - 50y -$ leading to	600 = 0 o $y = -10, 60$	DM1	DM1 for f and an atte	Forming a 3 term que empt to solve	adratic equation
		y must be	e positive so $y = 60$	A1 [5]	A1 for y	= 60 only	

Page 4	Mark Scheme			Syllabus	Paper	
	GCE O LEVEL – October/November 2013			4037	13	
3 $\tan^2 \theta - \sin^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} - \sin^2 \theta$			Marks are awarded only if they can lead to a complete proof for the methods other than those shown below			
	$=\frac{\sin^2\theta-\sin^2\theta\cos^2\theta}{\cos^2\theta}$	M1	M1 for de	aling with tan and a	a fraction	
	$=\frac{\sin^2\theta(1-\cos^2\theta)}{\cos^2\theta}$	M1	M1 for fac	ctorising		
$=\frac{\sin^4\theta}{\cos^2\theta}$		M1	M1 for us	M1 for use of identity $\cos^2 \theta + \sin^2 \theta = 1$		
$=\sin^4\theta\sec^2\theta$		A1 [4]	A1 for all correct			
Alt solution 1						
Using $\tan^2 \theta = \sin^2 \theta$	$\theta \sec^2 \theta$					
LHS = $\sin^2 \theta$ s = $\sin^2 \theta$ (= $\sin^2 \theta$ t	LHS = $\sin^2 \theta \sec^2 \theta - \sin^2 \theta$ = $\sin^2 \theta (\sec^2 \theta - 1)$ = $\sin^2 \theta \tan^2 \theta$		M1 use of $\tan^2 x = \sin^2 x \sec^2 x$ M1 for factorising M1 for use of identity			
$=\sin^4 \theta$	$\sec^2 \theta$	A1	A1 for all correct			
Alt solution 2						
$RHS = sin^4 \theta s$	$\sec^2 \theta$					
$=\frac{\sin^2\theta}{\cos^2\theta}$	$\frac{\sin^2\theta}{2\theta}$	M1	M1 for splitting $\sin^4 \theta$ and use of identity		e of identity	
$=\frac{\sin^2\theta\left(1-\cos^2\theta\right)}{\cos^2\theta}$		M1	M1 for multiplication			
$= \frac{\sin^2 \theta - \sin^2 \theta \cos^2 \theta}{\cos^2 \theta}$ $= \frac{\sin^2 \theta}{\cos^2 \theta} - \frac{\sin^2 \theta \cos^2 \theta}{\cos^2 \theta}$ $= \tan^2 \theta - \sin^2 \theta$		M1	M1 for wr	riting as two terms a	and cancelling	
		A1	A1 for all	correct		

Page 5	Mark Scheme			Syllabus	Paper	
	GCE O LEVEL – October/November			4037	13	
		1				
4 (i) $\frac{dy}{dx} = \frac{(x+x)^2}{(x+x)^2}$	$\frac{(x+3)^2 2e^{2x} - e^{2x} 2(x+3)}{(x+3)^4}$	M1	M1 for attempt at quotient rule			
- 2	(······)	A2, 1, 0	-1 for eac	h error		
$=\frac{2e^2}{(x)}$	$=\frac{2e^{2x}(x+2)}{(x+3)^3}, A=2$			Must be convinced of correct simplification e.g. sight of $(x + 3 - 1)$ or $(x + 2)(x + 3)$		
Alt solution		[4]				
$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{2\mathrm{x}} \left(-2\mathrm{e}^{2\mathrm{x}}\right)$	$(x+3)^{-3} + 2e^{2x}(x+3)^{-2}$	M1	M1 for attempt at product rule -1 for each error			
$2e^{2x}$	2)	A2,1,0				
$=\frac{2e^{-1}(x+3)}{(x+3)}$	$=\frac{2e^{2x}(x+2)}{(x+3)^3}, A=2$		Must be c e.g. sight	ust be convinced of correct simplification g. sight of $(x + 3 - 1)$ or $(x + 2)(x + 3)$		
(ii) $x = -2, y$	$= e^{-4}$	B1, B1 [2]	Accept 1/e ⁴			
5 (i) $f^{2}(x) = f$	$(2x^3)$					
=	$2(2x^3)^3$ or $2\left(2\left(\frac{1}{2}\right)^3\right)^3$	M1	M1 for =	$2(2x^3)^3$ or $2\left(2\left(\frac{1}{2}\right)^3\right)^3$	³) ³	
=	2-5	A1	For 2 ⁻⁵ only			
		[2]				
Alt method						
$f\left(\frac{1}{2}\right) = \frac{1}{4}$	$f\left(\frac{1}{4}\right) = 2^{-5}$	M1	M1 for f c	of their f $\left(\frac{1}{2}\right)$		
			For 2 ⁻⁵ onl	y		
(ii) $f'(x) = g$ $6x^2 = 4 - 4$	(x) - 10x	B1 B1	B1 for $6x^2$ B1 for 4 –	- 10x		
Leading	to $(3x-1)(x+2) = 0$	M1	M1 for so	lution of quadratic	equation obtained	
$x = \frac{1}{3}, -2$	2	A1 [4]	A1 for bot	th		

	Page 6	Mark Scheme			Syllabus	Paper
		GCE O LEVEL – Octobe	GCE O LEVEL – October/November 2013			13
6	Area under the	e curve:				
	$\int_{0}^{\sqrt{2}} 4 - x^2 \mathrm{d}x = \left[\right]$	$\left[4x - \frac{x^3}{3}\right]_0^{\sqrt{2}}$	M1 A1	M1 for att	tempt to integrate	
	=	$=\left(4\sqrt{2}-\frac{2\sqrt{2}}{3}\right)-(0)$	DM1	DM1 for a	application of limits	
	=	$=\frac{10\sqrt{2}}{3}$				
	Area of trapez	ium =				
	$\frac{1}{2}(4+2)(\sqrt{2}) =$	$=3\sqrt{2}$	B1	B1 for are	ea of trapezium, allo	w unsimplified
	Shaded area =	$\frac{10\sqrt{2}}{3} - 3\sqrt{2}$	M1	M1 for su	btraction of the two	areas
	Shaded area =	$\frac{\sqrt{2}}{3}$	A1 [6]	Must be in	n this form	
	Or : Equation of ch	ord:				
	$y = 4 - \sqrt{2x}$		B1	B1 for the	e equation of the cho	ord unsimplified
	Shaded area =	$\int_{0}^{\sqrt{2}} 4 - x^2 - 4 + \sqrt{2}x \mathrm{d}x$	M1 M1	M1 for su M1 for att	btraction tempt to integrate	
	$\left[\frac{\sqrt{2}}{2}x^2 - \frac{x^3}{3}\right]$	$\int_{0}^{\sqrt{2}} = \frac{\sqrt{2}}{3}$	√A1 DM1 A1	$\sqrt{A1}$ for $\begin{bmatrix} -\\ m \end{bmatrix}$ is the g	$-m\frac{x^2}{2} - \frac{x^3}{3}$] or equivalent of their chorapplication of limits	ivalent, where d
			[6]		**	

	Page 7	Mark Sche	me		Syllabus	Paper	
		GCE O LEVEL – Octobe	r/Novembe	r 2013	4037	13	
7	(i) $2t^2 - 2(t^2)$	-t+1)	B1	Correct determinant seen unsimplified			
	Leading t	M1 A1 [3]	M1 for simplification and solution A1 for solution of det A=1only, not 1/det A=1				
	(ii) $\mathbf{A} = \begin{pmatrix} 6 \\ 7 \end{pmatrix}$	B1, B1	B1 for $\frac{1}{4}$, B1 for matrix				
	$\begin{pmatrix} 6 & 2 \\ 7 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$	$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 10 \\ 11 \end{pmatrix}$	B1	B1 for dea	aling correctly with	the factor of 2	
	$\binom{x}{y} = \frac{1}{4} \left(\frac{x}{y} \right)$	$\begin{pmatrix} 3 & -2 \\ -7 & 6 \end{pmatrix} \begin{pmatrix} 10 \\ 11 \end{pmatrix}$	M1	M1 for pr	e-multiplying their	$\begin{pmatrix} 10\\11 \end{pmatrix}$ by their	
				\mathbf{A}^{-1} to obt	ain a column matrix	X	
	$\binom{x}{y} = \binom{2}{-1}$), leading to $x = 2, y = -1$	A1 [5]	Allow $\begin{pmatrix} x \\ y \end{pmatrix}$	$= \begin{pmatrix} 2 \\ -1 \end{pmatrix} \text{ for A1}$		
8	(i) $\frac{1}{2}(4^2)\sin(4^2))$ i(4^2)i(a)i(4^2)i(a)	$\theta = 7.5$	M1	M1 for att and equat	empt to find the are to 7.5	ea of the triangle	
	$\sin\theta = \frac{13}{16}$	$\frac{5}{5}, \ \theta = 1.215 \dots$	A1 [2]	A1 for sol Solution r	ution to obtain the nust include 1.2153	given answer	
	(ii) $\sin\frac{\theta}{2} = \frac{1}{2}$	$\frac{CD}{4}$, (CD = 4.567)	M1	M1 for att	empt to find CD		
	Arc lengt	h = 6(1.215)	B1	B1 for arc	length		
	Perimeter	r = 2 + 2 + 6(1.215) + their <i>CD</i>	M1	M1 for su	m of 4 appropriate	lengths	
		= awrt 15.9	A1 [4]			C	
	(iii) Area = $\frac{1}{2}$	$6^{2}(1.215) - 7.5$	B1 M1	B1 for sec M1 for su	etor area btraction of the 2 ar	reas	
	= 14	4.4 (awrt)	A1 [3]				

Page 8		Mark Sche	eme	Syllabus Paper				
		GCE O LEVEL – Octobe	r/Novembe	r 2013	4037	13		
		·						
9	(a) (i) 6 (1- 6 co (3 co	$-\cos^{2} x) = 5 + \cos x$ $s^{2} x + \cos x - 1 = 0$ $\cos x - 1) (2 \cos x + 1) = 0$	M1 M1	M1 for us M1 for so and attem	e of $\sin^2 x = (1 - \cos^2 x)$ lution of a 3 term q pt at solution of a tr	s ² x) correctly uadratic in cos rig equation		
	x = 7	A1, A1 [4]	A1 for eac	ch correct solution				
	(ii) cos <i>x</i>	$x = \sin y$						
	sin y	$v = \frac{1}{3}$ only so	DM1	DM1 for 1 correct me	DM1 for relating $\cos x$ and $\sin y$ or other			
	y	<i>p</i> = 19.5°, 160.5°	√A1, √A1 [3]	correct method of solution				
	(b) cot <i>z</i> (4 c	$\operatorname{ot} z - 3) = 0$	M1	M1 for att	empt to use a facto	r		
	$\cot z = 0,$	$z = \frac{\pi}{2}$	B1	B1 for $\frac{\pi}{2}$	(1.57)			
	$\cot z = \frac{3}{4}$, $\tan z = \frac{4}{3}$ so $z = 0.927$	M1 A1 [4]	M1 dealin	g with cot and atter	mpt at solution		
10	(i) lg <i>s</i>		B1	Allow in t	able or on graph if	no contradiction		
	(ii)			<u>No marks</u> Int against	for graph unless lg t lns)	<u>t against lgs (or</u>		
	lgs lgt	0.3 0.6 0.78 0.9 1.4 0.8 0.44 0.19	M1 DM1 A1 [3]	M1 for 3 o DM1 for a A1 all poi extending	or more points correct a line through 3 or 4 nts correct with a s at least from first p	ect 4 correct points traight line point to last point		
	(:::) No montr	in this next unloss later las						
	(III) <u>Ro marks</u> graph is u Gradient	$\frac{11}{15} \frac{11}{15} 11$	M1A1	M1 calcul A1 for $n =$	ates gradient = -2			
	Intercept $k = 100$: log k, or other method (allow $90 \rightarrow 120$)	M1, A1 [4]	M1 for us logarithm	e of intercept and d correctly (can use	ealing with another point)		
Alt method Using simultaneous equations, points used must lie on the plotted line.		M2 A1, A1	Must atter $k = 100$ ar	npt to solve 2 valid ad $n = -2$	equations.			
	(iv) When $t = s = 4.9$ (4, lg $t = 0.6$ so lg $s = 0.69$ (allow $4.8 \rightarrow 5.2$)	M1 A1 [2]	M1 for va graph or u their <i>n</i> and	lid method using ei using $\lg t = n \lg s + \lg d$ d their k	ther the correct k or $t = ks^n$ using		

	Page 9		Mark Sche	me		Syllabus	Paper
			GCE O LEVEL – Octobe	LEVEL – October/November 201		4037	13
				1			
11	(i) $\left[e^{2x} + \frac{5}{4}e^{-2x}\right]_0^k$			B1, B1	B1 for each term integrated correctly, allow unsimplified		
		$\left(e^{2k}+\frac{5}{4}e^{2k}\right)$	$e^{-2k}\left(1+\frac{5}{4}\right)=3$	M1	M1 for ap the form A	plication of limits to $4e^{2x} \pm Be^{-2x}$	o an integral of
		$e^{2k} + \frac{5}{4}e^{-\frac{5}{4}}$	$\frac{2k}{4} - \frac{12}{4} = 0$	M1	M1 for eq to obtain a integral of	uating to $\frac{3}{4}$ and att a 3 term equation. M f the form $Ae^{2x} + Be$	empt to rearrange fust be using an $-2x$
		$4e^{4k} - 12e^{4k}$	$^{2k} + 5 = 0$	A1 [5]	Answer g	_ iven, so must be cor	nvinced
	(ii)	$4y^2 - 12y$	+ 5 =0	M1	M1 for so	lution of quadratic of	equation
		leading to $k = 0.458$	$e^{2k} = \frac{5}{2}, e^{2k} = \frac{1}{2}$ -0.347	M1	M1 for so exponenti A1 for eac	lving equations invo als ch	olving
				[4]			