CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2013 series

4037 ADDITIONAL MATHEMATICS

4037/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	12

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA-1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	Page 4		Mark Scheme			Syllabus	Paper		
			GC	E O LEV	EL – Ma	y/June 20)13	4037	12
1	(i)	$n(A \cap B)$	<i>B</i>) = 5				B1		
	(ii)	n(A) =	16				B 1		
	(iii)	$n(B' \cap A)$			B 1				
2	(i)	$6 \times 5 \times 4 \times 3 = 360$ or ${}^{6}P_{4} = 360$			B 1	B1 unsimplified/e	evaluated		
	(ii)								
		Position 1 2 3 4							
		Num [*] of wa		4	3	1			
		or $\frac{1}{6}$ (i) or ${}^{5}P_{3}$ or ${}^{5}C_{3} \times {}^{6}C_{1}$				M1	M1 for a correct a unsimplified	attempt	
		Number of 4 digit numbers $= 60$			A1	unsimprined			
	(iii)								
		Posit	ion 1	2	3	4			
		Num of wa		4	3	1			
		or ${}^{3}P_{1}$ Number	$\times {}^{4}P_{2}$ er of 4 digit	numbers =	= 36		M1 A1	M1 for a correct a unsimplified	attempt
3		EITH	ER						
		$1 - 2\sin\theta - 2\cos\theta + \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta$			B1	B1 for correct exp $(1 - \cos\theta - \sin\theta)^2$			
		Use of	Use of $\sin^2\theta + \cos^2\theta = 1$ in simplification = 0			M1	M1 for use of sin ²	$^2\theta + \cos^2\theta = 1$ in	
							A1	this form A1 must be convi	nced as AG
	OR $(1 - \cos\theta - \sin\theta)^2 =$ $1 - 2\sin\theta - 2\cos\theta + \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta$			[B 1	B1 for correct exp $(1 - \cos\theta - \sin\theta)^2$				
		$= 2 - 2\sin\theta - 2\cos\theta + 2\sin\theta\cos\theta$			M1	M1 for use of sin this form	$^{2}\theta + \cos^{2}\theta = 1$ in		
	$= 2 (1 - \sin \theta) (1 - \cos \theta)$			A1]	A1 for simplificat factorising	ion and			

Page 5	Mark Scheme		Syllabus	Paper
	GCE O LEVEL – May/June 20)13	4037	12
	THER	M1		a2
j	$2x^{2} + kx + 2k - 6 = 0$ has no real roots $k^{2} - 16k + 48 < 0$ (k - 4) (k - 12) < 0		M1 for attempted use of $b^2 - 4ac$ DM1 for attempt to obtain critical values from a 3 term quadratic	
	Critical values 4 and 12 4 < k < 12 or $k > 4$ and $k < 12$		A1 for both critical values A1 for correct final answer	
OR	$\mathbf{OR}\left(x+\frac{k}{4}\right)^2 - \frac{k^2}{16} + k - 3 = 0$		M1 for attempting square and obtain quadratic	
	$-\frac{k^2}{16} + k - 3 > 0 \text{ so } k^2 - 16k + 48 < 0$		Then as EITHER	L
OR	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x + k$	[M1	M1 for differentia zero and obtaining equation in x	
By	en $\frac{dy}{dx} = 0$, $k = -4x$ substitution $x^2 + 4x + 3 < 0$ ling to $x = -1$, $k = 4$	DM1	DM1 for attempt values of k from a quadratic in x following substitution to obt	3 term owed by
and	x = -3, k = 12 4 < k < 12 or k > 4 and k < 12	A1 A1]	A1 for both critica A1 for correct fina	
OR	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x + k$	[M1]	M1 for differentia zero and obtaining equation in k	
	en $\frac{dy}{dx} = 0$, $x = -\frac{k}{4}$ ding to $k^2 - 16k + 48 < 0$		Then as EITHER	

Page	6	Mark Scheme		Syllabus	Paper
		GCE O LEVEL – May/June 20)13	4037	12
				•	
5	$2\left(\frac{15}{2}\right)$	$\left(\frac{5-4y}{3}\right)y = 9 \text{ or } 2x\left(\frac{15-3x}{4}\right) = 9$	M1	M1 for attempt to obtain equation in one variable	
	$8y^{2} - 30y + 27 = 0 \text{ or } 3x^{2} - 15x + 18 = 0$ (4y - 9) (2y - 3) = 0 or (x - 3) (x - 2) = 0		DM1	DM1 for attempt quadratic in that v	
	<i>x</i> = 2	$y = \frac{9}{4}$ and $x = 3, y = \frac{3}{2}$	A1, A1	A1 for each 'pair' be simplified to si form	
	$AB^2 =$	$= 1^2 + (0.75)^2, AB = 1.25$	M1, A1	M1 for a correct a <i>AB</i> , must have not differences and be calculated previou	n zero e using points
6	$\frac{\mathrm{d}y}{\mathrm{d}x} =$	$= 3 \sec^2 x$	B1	B1 for $3\sec^2 x$	
	When	$n x = \frac{3\pi}{4}, \frac{dy}{dx} = 6$	B 1	B1 for $\frac{dy}{dx} = 6$, m later work	ay be implied by
		<i>y</i> = 5	B1	B1 for y	
	Perpe	endicular gradient = $-\frac{1}{6}$	M1	M1 for perpendic from $\frac{dy}{dx}$	ular gradient
	Equa	tion of normal $y + 5 = -\frac{1}{6}\left(x - \frac{3\pi}{4}\right)$	M1	M1 for attempt at using <i>their y</i> value $x = \frac{3\pi}{4}$ and substi	e correctly and
	When	n $x = 0, y = \frac{\pi}{8} - 5$ o.e.			
		or -4.61 or -4.6 but not -4.60	A1	A1 for obtaining y	v value

	Page 7	7	Mark Scheme		Syllabus	Paper	
			GCE O LEVEL – May/June 20	013	4037	12	
		Т		1	1		
7	(i)	f (-2)	leads to $68 = b - 2a$	M1	attempt at f (-2) = allow unsimplified		
		f(1) le	and to $26 = a + b$	M1	attempt at $f(1) = 2$ allow unsimplified		
		a = -1	4, <i>b</i> = 40	A1, B1	A1 for $b = 40$, B1	for $a = -14$	
	(ii)	f(x) =	$x(x+2)(6x^2-17x+20)$	B2, 1, 0	-1 each error		
	(iii)	$6x^2 -$	17x + 20 = 0 has no real roots	B1	completing the sq	by use of formula, he square or use of now that there are no	
		x = -2		B1			
8	(a) (i)		$\begin{pmatrix} -2\\ 31 \end{pmatrix}$	B2, 1, 0	-1 each element e	error	
	(ii)	$\begin{pmatrix} 16\\ 9 \end{pmatrix}$		B2, 1, 0	-1 each element e	error	
	(b) (i)	$\frac{1}{18+9}$	$5\begin{pmatrix}3&-1\\9&6\end{pmatrix}$	B1, B1	B1 for $\frac{1}{\text{determinar}}$ (allow unsimplified B1 for matrix	nt ed),	
	(ii)	$\begin{pmatrix} x \\ y \end{pmatrix} =$	$\frac{1}{27} \begin{pmatrix} 3 & -1 \\ 9 & 6 \end{pmatrix} \begin{pmatrix} 5 \\ 1.5 \end{pmatrix}'$	M1	M1 for correct use matrix, including multiplication to s	correct	
		=	$=\frac{1}{27}\binom{13.5}{54}$				
		x = 0.	5, y = 2	A1, A1	A1 for each		

	Page 8		Mark Scheme		Syllabus	Paper
		GCE O LEVEL – May/June 2013			4037	12
				1	1	
9	(i)	$\left(1+\frac{1}{2}x\right)^n = 1+n\left(\frac{x}{2}\right)+$	$\frac{n(n-1)}{2}\left(\frac{x}{2}\right)^2$	B1, B1	B1 for 1 + second 3rd term Allow unsimplifie	
	(ii)	$\left(1-x\right)\left(1+n\left(\frac{x}{2}\right)+\frac{n(n-1)}{2}\right)$	$\frac{1}{2}\left(\frac{x}{2}\right)^2$	M1	dealing with 2 terr	ns involving x^2
		Multiply <i>x</i> and $\frac{n}{2}x$ to	get $\frac{n}{2}(x^2)$	DM1	attempt to obtain o	one term
		Multiply 1 and $\frac{n(n-1)}{8}$	$\frac{ x^2 }{4}$ or $\frac{n(n-1)x^2}{4}$	DM1	attempt to obtain a	second term
		$\frac{n^2-n}{8}$	$-\frac{n}{2} = \frac{25}{4}$			
		$n^2 - 5n$	-50 = 0	A1	correct quadratic e	equation
		<i>n</i> = 10		A1	A1 for $n = 10$ only	7
10	(a) (i)	$\frac{1}{3}(2x-5)^{\frac{3}{2}}$		B1, B1	B1 for $k(2x-5)^{\frac{3}{2}}$, $\frac{1}{3}(2x-5)^{\frac{3}{2}}$	B1 for
		$\frac{125}{3} - \frac{1}{3} = \frac{124}{3}$ Allow awrt	41.3	M1, A1	M1 for correct use	e of limits
		$x^3 \frac{1}{x} + 3x^2 \ln x$		B1, B1	B1 for each term, unsimplified	allow
	(ii)	$\int 3x^2 \ln x dx = x^3 \ln x - x^3 \ln x $	$\int x^2 dx$ o.e.	M1	for a use of answe	r to (i)
		$\int 3x^2 \ln x dx = x^3 \ln x - x^3 \ln x - x^3 \ln x - x^3 \ln x - x^3 \ln x + x^3 \ln x $		A1	A1 for intergrating by 3	$g x^2$ or dividing
		$\int x^2 \ln x dx = \frac{1}{3} \left(x^3 \ln x + \frac{1}{3} \right)^2$	$-\int x^2 dx \bigg)$ o.e.			
		$\int x^2 \ln x \mathrm{d}x = \frac{1}{3} \left(x^3 \ln x \right)$	$-\frac{x^3}{3}$ (+c)	A1		

	Page 9		Mark Scheme	Syllabus	Paper	
			GCE O LEVEL – May/June 20	013	4037	12
		[1	1	
11	(a)	$\cos 2x$ -	$+\frac{2}{\cos 2x}+3=0$	M1	dealing with sec o	r cos
		leading	to $\cos^2 2x + 3\cos 2x + 2 = 0$ $2\sec^2 2x + 3\sec 2x + 1 = 0$	A1	simplification to c quadratic in sec 2x not have to be equ	c or $\cos 2x$ (does
			$(\cos 2x + 1) = 0$ (2x+1) (sec 2x + 1) = 0	M1	attempt to solve a quadratic, must obtem terms of $\cos 2x$	
			to $\cos 2x = -1$ or $\sec 2x = -1$ only $2x = 180^{\circ}, 540^{\circ}$ $x = 90^{\circ}, 270^{\circ}$	A1, A1		
	(b)		$\left(\frac{\pi}{6}\right) = \frac{1}{2} \text{ so}$ $\left(y - \frac{\pi}{6}\right) = \frac{1}{\sqrt{2}}$	M1	division by 2 and	square root
			$ \left(\begin{array}{c} 6\end{array}\right) = \sqrt{2} \\ = \frac{\pi}{4}, \frac{3\pi}{4} $	DM1	correct order of op	peration and
		$y = \frac{5\pi}{12},$		A1, A1	attempt to solve	
12	(i)	$\frac{\mathrm{d}y}{\mathrm{d}t} = 36$	-6 t	M1	attempt to differen to zero	ntiate and equate
		W	When $\frac{\mathrm{d}y}{\mathrm{d}t} = 0$, $t = 6$	A1		
	(ii)	When <i>v</i>	= 0, t = 12	M1, A1	M1 for equating <i>v</i> attempt to solve	to zero and
	(iii)	$s = 18t^2$	$-t^{3}(+c)$	M1, A1	M1 for a correct a integrate at least o unsimplified A1 for all correct	
		When <i>t</i>	= 12, s = 864		A1 for <i>s</i> = 864	
	(iv)	When $s = 0, t = 18$		M1 √A1	M1 for substitution their s equation $\sqrt{A1}$ on their s	on of $s = 0$ into
		v	=-324	DM1	DM1 for substitut	ion of <i>their t</i>
		S	o speed is 324		back into v equation A1 for 324 only	on