CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the October/November 2012 series

4037 ADDITIONAL MATHEMATICS

www.tiremepapers.com

4037/23

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2012	4037	23

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2012	4037	23

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2012	4037	23

1	1.2 $5x + 7 = -13 \text{ or } 25x^2 + 70x + 49 = 169$ 5(5x - 6)(x + 4) = 0 -4	B1 M1 A1 [3]	correct positive value correct method to find second value correct final answer
2	(i) $\frac{1}{6 \times 7 - 8 \times 4} \begin{pmatrix} 6 & -8 \\ -4 & 7 \end{pmatrix}$	B1B1 [2]	B1 for each part of the inverse
	(ii) $\binom{x}{y} = \frac{1}{10} \binom{6}{-4} \frac{-8}{7} \binom{39}{23}$	M1	pre-multiply $\begin{pmatrix} 39\\23 \end{pmatrix}$ by their inverse
	$= \begin{pmatrix} 5\\0.5 \end{pmatrix}$	A1 [2]	correct answers, correctly associated
3	$(3\sqrt{3} - 1)^2 = 27 - 6\sqrt{3} + 1$	M1	multiplication, including $a\sqrt{3} \times b\sqrt{3} = 3ab$
	or $(3\sqrt{3} - 1)(2\sqrt{3} + 3) = 18 + 7\sqrt{3} - 3$	A1	a correct expansion
	$\times \frac{2\sqrt{3}+3}{2\sqrt{3}+3} \text{ or } 28-6\sqrt{3} = \frac{a\sqrt{3}+b}{3}(2-3)$	M1	valid method to obtain a value for a or b
	$\frac{38\sqrt{3}+48}{3}$ or $a = 38, b = 48$	A1 [4]	correct answers

	Page 5	Mark Sche			Syllabus	Paper
		GCE O LEVEL – Octobe	r/Novemb	er 2012	4037	23
			T			
4						
	$\overrightarrow{XZ} = \begin{pmatrix} 16\\20 \end{pmatrix}$		B1	correct vect	or for \overrightarrow{XZ}	
	$\overrightarrow{OY} = \begin{pmatrix} 4\\ -27 \end{pmatrix} + \frac{3}{4} \begin{pmatrix} 16\\ 20 \end{pmatrix} \text{or} \begin{pmatrix} 20\\ -7 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} -16\\ -20 \end{pmatrix}$		M1	valid metho	d for \overrightarrow{OY}	
	$=\begin{pmatrix}16\\-12\end{pmatrix}$			correct vect	or for <i>OY</i>	
	$\left \overrightarrow{OY}\right = \sqrt{16^2 + \left(-12\right)^2}$	$\overline{)^2}$ oe	M1	uses Pythag	oras to find length	of \overrightarrow{OY}
1	unit vector in direct	ion of $\overrightarrow{OY} = \begin{pmatrix} 0.8 \\ -0.6 \end{pmatrix}$ oe	A1 [5]	correct vect	or expression	
	OR $\overrightarrow{OY} - \overrightarrow{OX} = 3\overrightarrow{OX}$	$\overrightarrow{DZ} = 3\overrightarrow{OY}$	B1	correct vect	or equation	
	$4\overrightarrow{OY} = \begin{pmatrix} 4\\ -27 \end{pmatrix}$	$+3\binom{20}{-7} = \binom{64}{-48}$	M1	collect \overrightarrow{OY}	s and substitute for	\overrightarrow{OX} and \overrightarrow{OZ}
	$\overrightarrow{OY} = \begin{pmatrix} 16\\ -12 \end{pmatrix} \epsilon$		A1	correct vect	or for <i>OY</i>	
	OR $\overrightarrow{OY} = \frac{\overrightarrow{OX} + 3\overrightarrow{O}}{4}$		B1	correct use	of intercept theoren	1
	$=\frac{\binom{4}{-27}+\frac{3}{4}}{4}$	$3\left(\frac{20}{-7}\right)$	M1	substitute fo	or \overrightarrow{OX} and \overrightarrow{OZ} and	l divide
	$= \begin{pmatrix} 16\\ -12 \end{pmatrix}^4$	etc.	A1	correct vect	or for <i>OY</i>	

Page 6	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2012	4037	23

5	$mx + 2 = mx^{2} + 7x + 11$ $mx^{2} + 7x - mx + 9 = 0$ $(7 - m)^{2} - 4 \times m \times 9 \sim 0$ $m^{2} - 50m + 49 \sim 0$ (m - 1)(m - 49), m = 1, 49 1 < m < 49	M1* A1 M1dep* A1 M1 A1 [6]	eliminates either <i>y</i> or <i>x</i> correct equation compares discriminant with 0 correct quadratic solves 3-term quadratic for <i>m</i> correct answer
6	(a) $\sec^2 x = \frac{1}{p^2}$	B1	correct expression for $\sec^2 x$ in terms of p
	$\tan^{2} x = \sec^{2} x - 1 = \frac{1}{p^{2}} - 1$ OR $\sin^{2} x = 1 - p^{2}$	M1 A1 [3]	substitution in correct formula (<i>ps</i> only) correct answer, oe
	$\tan^2 x = \frac{\sin^2 x}{\cos^2 x} = \frac{1 - p^2}{p^2}$	B1 M1 A1	correct expression for $\sin^2 x$ in terms of <i>p</i> substitution in correct formula (<i>ps</i> only) correct answer, oe
	OR $\sqrt{1-p^2}$ p $\tan x = \frac{\sqrt{1-p^2}}{p}$	B1	'opposite' is $\sqrt{1-p^2}$
	$\tan x = \frac{\sqrt{1-p}}{p}$ $\tan^2 x = \frac{1-p^2}{p^2}$	M1 A1	$\tan x =$ their opposite \div their adjacent correct answer, oe
	(b) $\cot^2 \theta + 2(\cot \theta \tan \theta) + \tan^2 \theta$ $\cot^2 \theta = \csc^2 \theta - 1 \text{ or } \tan^2 \theta = \sec^2 \theta - 1$	B1	correct squaring of bracket
	control θ = cosec θ - 1 of tan θ = sec θ - 1 completion "AG"	B1 B1 [3]	use of a correct relevant formula correct completion

	Page 7	Mark Sch			Syllabus	Paper
		GCE O LEVEL – Octobe	er/Novemb	er 2012	4037	23
7	(2)					
	(a) $\int \left(x^{\frac{3}{2}} + 3x^{\frac{1}{2}}\right) dx$ $\frac{2}{5}x^{\frac{5}{2}} + 2x^{\frac{3}{2}}(+c)$		B1 M1 A1		ression in terms of i actional power by 1 wer, ISW	ndices
	5		[3]			
	(b)					
	$\frac{k}{2x+5}$ oe		M1	integral of	correct form, k a co	nstant
	$\frac{-10}{2x+5}$ oe		A1	correct inte	gral, ignore '+ c'	
	$\frac{k}{2 \times 10 + 5} - \frac{k}{5}$		M1	with $x = 0$	al with $x = 10$ subtra	-
	1.6		A1√ [4]	correct ans	wer, ft their $k \left(= \frac{-2}{25} \right)$	$\left(\frac{4}{5}k\right)$
8	gradient $\frac{9-3}{1-(-2)} (=2)$	2)	B1	correct grad	lient	
	(AD) y - 5 = 2(x - 1)	4) or $y = 2x - 3$	B1√	correct equ	ation for AD, ft thei	$\mathbf{r} m_{AD}$
	(CD) $y - 9 = -\frac{1}{2}(x)$,	M1 A1		= -1 and $x = 1$ and y ation for <i>CD</i>	y = 9 in equation of line
	solves equation for A D is (5, 7)	D with equation for CD	M1 A1	solving equ x = 5, y = 7	ations for a value o	f x or y
	$\operatorname{area} = \frac{1}{2} \begin{vmatrix} 4 & -2 & 1 & 5 \\ 5 & 3 & 9 & 7 \end{vmatrix}$	$\binom{4}{5} = \frac{1}{2} 26 - 66 $	M1	a correct m	ethod to calculate th	ne area of the trapezium
	or $=\frac{1}{2}\left(\sqrt{5}+\sqrt{45}\right)$	$\sqrt{20}$				
	= 20		A1 [8]	correct ans	wer	
	OR (X on BC, $AX//D$ gradient = $\frac{9-3}{1-(-2)}$		B1	correct grad	lient	
	(BC) y-9=2(x-1)		B1	correct equ	ation for <i>BC</i>	
	$(AX) y-5 = -\frac{1}{2}(x)$	(-4) or $2y = -x + 14$	M1 A1		= -1 and $x = 4$ and y ation for AX	v = 5 in equation of line
	X(0, 7)	<i>C</i> with equation <i>AX</i>	M1 A1	solving equ x = 0, y = 7	ations for a value of	f x or y
1	$\operatorname{area}\Delta + \operatorname{area}$ real $1\sqrt{2}$	-	M1		<u>, 1</u> 1 , 1 1 , 4	
1	$=\frac{1}{2}\sqrt{20}\times\sqrt{20}+$	$\sqrt{20} \times \sqrt{5}$		a correct m	ethod to calculate th	ne area
	= 20		A1	correct ans	wer	
			· · · · ·			

Page 8	Mark Sch	eme		Syllabus	Paper
	GCE O LEVEL – Octobe	er/Novemb	er 2012	4037	23
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 [1]	correct answ			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		M1 A2,1,0 [3]		x^{3} , linear a ints plotted correctl	
(iii) $a = 9.5$ to 10.5		B1	correct answ	ver	
gradient = $\frac{y_2 - x_2}{x_2 - x_2}$	$\frac{y_1}{x_2}$	M1	finding num	nerical value for the	gradient
$b = -0.6 \pm 0.01$	A1 [3]	correct answer			
(iv) $y = \frac{a}{13.69} + 3.7b$	M1	appropriate substitutions or read graph at 50.653 and divide value by 13.69			
$= -1.48 \pm 0.04$	A1 [2]	correct answ	ver		
10 (i) $x^2 + 80^2$ seen		B1			
time = $\frac{\text{distance}}{\text{speed}}$,	oe	B1 [2]			
(ii) $\left(\frac{\mathrm{d}T}{\mathrm{d}x}\right) = \frac{1}{10} + \frac{1}{64}$ $\frac{x}{6\sqrt{x^2 + 6400}} = \frac{1}{10}$	•	M1* A1A1 M1dep*	A1 each con	lifferentiate given extreme the second seco	erm
<i>x</i> = 60		A1	correct answ	ver for <i>x</i>	
$T = 30\frac{2}{3}(30.7)$		A1 [6]	correct answ	ver for T	

	Page 9	Mark Sche	eme		Syllabus	Paper
		GCE O LEVEL – Octobe		er 2012	4037	23
				1		
11 (a		$\frac{x-2}{2} = \log_2 100$	B1	correct expi	ression	
(1	$x = 2 + \frac{4}{0.30}$ $= 15.3$	1	M1 valid attempt to obtain value for x A1 correct answer [3]			
	$\log_y 512 = 3 \text{ or}$ or $\log_y k = \frac{\log_y}{\log_y}$	$\frac{k}{y}$ (twice)	B1	correct relevant use of rule for logarithms		
	$y^3 = 512 \text{ or } 2 =$ y = 8	$\frac{y^{3}}{256}$	M1 A1 [3]	attempt to solve correct answer		
(c)	$\frac{6^{5z-2}}{6^{2z}} = \frac{6^{3(z-1)}}{6^{2(3-z)}}$	$5^{2z} = \log 6^{3(z-1)} - \log 6^{2(3-z)}$ 3 - (6 - 2z) oe	M1 A1 M1 A1 [4]	or log6 correct exp	ression indices or logarithn prmat	elements in terms of 6 ^z ns correctly, accept
12E (i	$(2x+8)^2 - 9 c$	or $a = 2, b = 8, c = -9$	B1B1B1 [3]		correct value	
(ii (iii)	() $f^{-1}(x) = \frac{\sqrt{(x+9)}}{2}$	$\overline{)-8}$ oe	M1 A2,1,0√ [3]			
	$\left(\frac{2}{x}+8\right)^2 - 9 = 1$	35 or $\frac{4}{x^2} + \frac{32}{x} + 55 = 135$	M1	apply fg (no	ot gf) or replace <i>x</i> by	$\frac{1}{x}$
	$\frac{2}{x} + 8 = 12(\text{or} - 1)$	(2) or $80x^2 - 32x - 4 = 0$	A1 M1	correct equation valid method for solving their equation		
	x = 0.5 oe, only		A1 [4]	correct answ	ver	

	Page 10	Mark Sche	eme		Syllabus	Paper
	GCE O LEVEL – October/Novemb			er 2012	4037	23
120 (i) 3.5		B1 [1]	correct answ	ver	
(i	i) $y^2 + 7 = 2x$ $h^{-1}(x) = \frac{x^2 + 7}{2}$		M1 A1 [2]	attempt at in correct inve	nverse, involving sq erse	uaring
(i	ii) $\frac{3x-4}{x-2} = x, x^2 - x^2$	-5x + 4 = 0	M1	equate $k(x)$	with x and obtain q	adratic equation
	(x-4)(x-1) $x = 4 only$		M1 A1 [3]	solve three correct answ	term quadratic ver	
(i						
	$3\left(\frac{3x-4}{x-2}\right) - 4$		M1	substitute to	o obtain expression	for k^2
	$\frac{3\left(\frac{3x-4}{x-2}\right)-4}{\left(\frac{3x-4}{x-2}\right)-2}$		A1	correct unsi	mplified expression	L
	$\frac{3(3x-4)-4(x-4)}{3x-4-2(x-4)}$	(-2) / 2)	M1	multiply nu	merator and denom	inator by $(x - 2)$, oe
	$5-\frac{4}{x}$		A1 [4]	correct answ	ver	