

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

4037 ADDITIONAL MATHEMATICS

4037/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2012	4037	12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Page 3 Mark Scheme: Teachers' version		Paper
	GCE O Level – May/June 2012	4037	12

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA-1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	Page 4 Mark Scheme: Teachers		Syllabus Paper
	GCE O LEVEL – May/Ju	une 2012	4037 12
1	(i) $\frac{2}{21}(7x-5)^{\frac{3}{2}}$ (+ c)	B1 B1, B1	B1 for multiplication by $\frac{2}{3}$, or division by $\frac{3}{2}$ B1 for $(7x-5)^{\frac{3}{2}}$, B1 for $\frac{1}{7}$
	(ii) $\frac{2}{21} \left(16^{\frac{3}{2}} - 9^{\frac{3}{2}} \right)$ (= $\frac{2}{21} (64 - 27)$) = $\frac{74}{21}$ or awrt 3.52 or $3\frac{11}{21}$	M1 A1 [5]	M1 for correct use of limits, must have attempted integration, must be using their $(7x-5)^{\frac{2n+1}{2}}$ from (i)
2	$4u^{2} - 5u + 1 = 0$ (4u - 1) (u - 1) = 0 or (4.2 ^x - 1)(2 ^x - 1) = 0	B1, M1 DM1	B1 for $2^{2x+2} = 4u^2$ or 4×2^{2x} or $2^2 \times 2^{2x}$ or 2^2u^2 M1 for attempt to obtain a 3 term quadratic equation in terms of either or, equated to zero. DM1 for solution of quadratic equation
	$2^{x} = \frac{1}{4}, 2^{x} = 1$	A1	A1 for both
	leading to $x = -2, 0$	A1	A1 for both
	Alternate scheme for one correct factor: $2^{x} = \frac{1}{4}$, leading to $x = -2$ $2^{x} = 1$, leading to $x = 0$	[A1] [A1] [5]	
3	$\frac{\cos A}{\sin A} + \frac{\sin A}{1 + \cos A}$ $= \frac{\cos A + \cos^2 A + \sin^2 A}{\sin A(1 + \cos A)}$ $= \frac{(1 + \cos A)}{\sin A(1 + \cos A)}$	B1 M1 M1	B1 for $\cot A = \frac{\cos A}{\sin A}$ M1 for obtaining as a single fraction M1 for use of $\cos^2 A + \sin^2 A = 1$
	$=\frac{1}{\sin A}$ = cosecA	A1	A1 for correct simplification – answer given.
	Alternate solution:		
	$\cot A + \frac{\sin A(1 - \cos A)}{(1 + \cos A)(1 - \cos A)}$	[M1]	M1 for multiplying by $(1 - \cos A)$
	$= \cot A + \frac{\sin A(1 - \cos A)}{\sin^2 A}$	[M1]	M1 for use of $\cos^2 A + \sin^2 A = 1$ anywhere
	$= \cot A + \frac{1 - \cos A}{\sin A}$	[M1]	M1 for cancelling sin A
	$= \cot A - \cot A + \frac{1}{\sin A} \text{ leading to cosec} A$	[A1] [4]	A1 for subtraction and simplification

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2012	4037	12

4	Using $y = \frac{2-5x}{3}$ or, using $x = \frac{2-3y}{5}$ $5x^2 - 21x + 4 = 0$ or $3y^2 + 17y - 6 = 0$ (5x - 1)(x - 4) = 0 or $(3y - 1)(y + 6) = 0x = \frac{1}{5}, y = \frac{1}{3} x = 4, y = -6Alternate substitutions:x = \frac{2y}{3+y} or y = \frac{3x}{2-x}$	M1 M1 DM1 A1, A1 [5]	M1 for substitution to get an equation in terms of one variable M1 for attempt to form a 3 term quadratic equation = 0 DM1 for solution of quadratic equation A1 for each 'pair'
5	(i) $(2-x^2)\frac{3}{(3x+1)} - 2x\ln(3x+1)$	B1 M1 A1	B1 for differentiating $ln(3x + 1)$ correctly M1 for correct attempt at product A1 for all else correct
	(ii) $\frac{5x(-2\sec^2 2x) - 5(4 - \tan 2x)}{25x^2}$ or $\frac{5x(-2\sec^2 2x) - 5(4 - \tan 2x)}{(5x)^2}$	B1 M1 A1 [6]	B1 for differentiating $tan(4 - 2x)$ correctly M1 for correct attempt at quotient or product A1 for all else correct
6	(i) $\frac{8(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)} = 4(\sqrt{3}-1)$ or $\frac{8}{\sqrt{3}+1} = a(\sqrt{3}-1),$ $8 = a (\sqrt{3}-1)(\sqrt{3}+1)$	M1	M1 for rationalisation or attempt to form equation
	<i>a</i> = 4	A1	
	(ii) $\sin 60 = \frac{\sqrt{3}}{2} = \frac{h}{4(\sqrt{3}-1)}$ $\tan 60 = \sqrt{3} = \frac{h}{2(\sqrt{3}-1)}$	M1	M1 for use of sine or tangent and their value of <i>a</i> from (i) or $\frac{8}{\sqrt{3}+1}$
	Or $(4(\sqrt{3}-1))^2 = h^2 + (2(\sqrt{3}-1))^2$ $h = 6 - 2\sqrt{3}$ ANSWER GIVEN	A1	or Pythagoras, A1 for rearranging and simplifying correctly to obtain given answer.
	(iii) Area = $\frac{1}{2}4(\sqrt{3}-1)(6-2\sqrt{3})$ or $\frac{1}{2}4(\sqrt{3}-1)4(\sqrt{3}-1)\sin 60^\circ$	M1	M1 for valid method for area using their <i>a</i> from (i) or $\frac{8}{\sqrt{3}+1}$
	$= 16\sqrt{3} - 24$	A1 [6]	A1 working must be seen

Page 6Mark Scheme: Teachers' versionSyllabusGCE 0 LEVEL – May/June 20124037					Paper 12			
7	(i)			B1 B1 B1	B1 fo	for shape or $x = -2, 3$ or $y = 6$		
	(ii)	x = -3, 4	= -6, leading to	B1 B1 B1 [6]	B1 for one correct answerB1 for a second correct answerB1 for a third and fourth correct answer			
8	(i)		$\frac{20\pi}{3}$ or 20.94, 20.9	B1	B1 for arc length correct			
		$\tan\frac{\pi}{3} = \frac{A}{1}$	$\frac{X}{0}$, AX = 10 $\sqrt{3}$, 17.3 (or XB)	B 1	B1 fo	or AX/XB		
		5 1	= awrt 55.6 or $20\sqrt{3} + \frac{20\pi}{3}$	B 1	B1 fo	or final answer		
	(ii)	Area of se	ector $AOB = \frac{1}{2}10^2 \frac{2\pi}{3}$ or 104.7 or 105	B1	B1 fo	or sector area correc	ct	
			$AXB = 100\sqrt{3}$ or 173.2	M1	M1 for valid attempt at area <i>OAXB</i> , using the BX from part (i) (10 × their BX)			
		Shaded an	ea = awrt 68.5 or $100\sqrt{3} - \frac{100\pi}{3}$	M1 A1 [7]	(inde	for area <i>OAXB</i> – sec pendent) be considering a q gle.		
9	(i)	250		B 1	B1 fo	or 250		
	(ii)	$8 = e^{\frac{x}{100}}$		B1	B1 fo	or $8 = e^{\frac{x}{100}}$		
			'their 8' or $x = 100 \ln$ their 8	M1	M1 f	for dealing with e co	orrectly, using ln	
		x = 208 c	r awrt 208	A1	A1 fo	or awrt 208		
	(iii)	$\frac{\mathrm{d}N}{\mathrm{d}x} = \frac{1}{2}\mathrm{e}$		B1, B1	B1 fo	or $e^{\frac{x}{100}}$, B1 for $\frac{1}{2}e^{\frac{1}{10}}$	$\frac{x}{100}$ or $\frac{50}{100}e^{\frac{x}{100}}$	
		$45 = \frac{1}{2}e^{\frac{1}{10}}$	<u>.</u> 0	M1		C C	$\frac{N}{dx}$ to 45 and attempt	
		$e^{\frac{x}{100}} = 90$, so $N = 4700$ (awrt 4700)	A1 [8]	to so A1 fe	lve or 4700		

Page 7	Mark Scheme: Teachers	' version		Syllabus	Paper
	GCE O LEVEL – May/Ju	ne 2012		4037	12
10 (a) (i) f'(x) f"(x	B1 B1	First B1 may be implied by a correct answer for f " (x)If done by quotient rule, allow unsimplifiedM1 for a valid attempt at the inverse			
(ii) y = -2	M1				
$f^{-1}(x)$	$=\frac{1}{x} - 2 \text{ or } \frac{1-2x}{x}$	A1	A1 m	ust be in correct fo	orm, allow $y = \dots$
(iii) $f^{2}(x)$	M1		or correct attempt a		
	$\begin{pmatrix} 2+x \end{pmatrix}$	DM1	DM1	for attempt at solu	tion of $f^2(x) = -1$
Equa	A1	A1 for	$r x = -\frac{7}{3}$ or equiv	alent	
(b) (i) gh (x) or gh	B1	B1 for	r either form	
(ii) kg (x) or kg	B1 [9]	B1 for	r either form	
11 (i) P (3, 1)		B1, B1	B1 for	r each coordinate	
Grad AB	$=\frac{18}{12}$	B1	B1 for	r gradient of AB	
⊥ grad –	3	∛B1	∛B1 f	for perpendicular g	radient
<i>PQ</i> : <i>y</i> − 1	$= -\frac{2}{3}(x-3) \qquad (2x+3y=9)$	√ B1		on their perp gradie be $y = \dots$	ent and their point P
(ii) Q(-15, 13		M1 A1		or use of $y = 13$ and r both coordinates	d their PQ equation. (can be implied)
2	$\sqrt{18^2 + 12^2} \sqrt{8^2 + 12^2}$	M1	M1 fo	or a valid attempt a	it area $\frac{1}{2} \times PQ \times PB$
	$\frac{1}{2}\begin{vmatrix} 3 & 11 & -15 & 3 \\ 1 & 13 & 13 & 1 \end{vmatrix}$		Matrix	x method using the	eir coordinates
	$\frac{1}{2} \times 26 \times 12$ 156	A1	$\left \frac{1}{2} \times Q \right $	$B \times \text{vertical perp h}$	eight
		[9]			

Page 8	Page 8 Mark Scheme: Teachers' version				Syllabus	Paper
		GCE O LEVEL – May/June 2012			4037	12
(i) veloo posit = 90				form M1 f	for	st in numeric vector
ship boat so ve speed				B1 fo	or (102 i + 80 j)	ity of boat and speed
				B1, a	allow unsimplified	but must be correct
				M1	for use of tan and th	eir velocity vector

Page	9	Mark Scheme: Teacher	rs' version		Syllabus	Paper
		GCE O LEVEL – May/	June 2012		4037	12
12 OR (i)	(i) $\overrightarrow{OQ} \mathbf{a} + \frac{1}{3} (\mathbf{b} - \mathbf{a})$			Allo	w unsimplified	
$= \frac{2}{3}\mathbf{a} + \frac{1}{3}\mathbf{b}$ $\overrightarrow{PQ} = -\frac{5}{4}\mathbf{b} + \mathbf{a} + \frac{1}{3}(\mathbf{b} - \mathbf{a})$ $= \frac{2}{3}\mathbf{a} - \frac{11}{12}\mathbf{b}$			√ B1	Follow through on their \overrightarrow{OQ} , allow unsimplified		
(ii) \overline{Q}	$\vec{R} = \lambda \mathbf{a} - \mathbf{a}$	$(\mathbf{a}+\frac{1}{3} (\mathbf{b}-\mathbf{a}))$	M1	M1 for λa – their \overrightarrow{OQ}		
	$= \lambda \mathbf{a} - \frac{2}{3}\mathbf{a} - \frac{1}{3}\mathbf{b}$			A1 – allow unsimplified		
	$\vec{R} = \mu(\vec{PQ})$		M1	M1 1	for attempt to obtain	n \overrightarrow{QR} in terms of \overrightarrow{PQ}
(1	$(-\mu)\overrightarrow{QR} =$	$=\mu \overrightarrow{PQ}$	M1	M1 1	for attempt to simpl	lifiy
Q	$R = \frac{\mu}{1 - \mu}$	$\left(\frac{2}{3}\mathbf{a} - \frac{11}{12}\mathbf{b}\right)$	A1			
	(iv) Equating b's $-\frac{11}{12}\frac{\mu}{1-\mu} = -\frac{1}{3}$ $\mu = \frac{4}{15}$ M1 M1 for each of the solve					ctors and attempt to
μ				or each		
λ	$=\frac{10}{11}$		A1 [10])]		