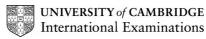
MARK SCHEME for the October/November 2006 question paper

4037 ADDITIONAL MATHEMATICS

4037/02 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.


All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

The grade thresholds for various grades are published in the report on the examination for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2006 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Mark Scheme Notes

Marks are of the following three types:

- Method mark, awarded for a valid method applied to the problem. Method Μ marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW -1,2 This is deducted from A or B marks when essential working is omitted.
- PA -1 This is deducted from A or B marks in the case of premature approximation.
- S -1 Occasionally used for persistent slackness - usually discussed at a meeting.
- EX -1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - OCT/NOV 2006	4037	2

1 [3]	(i) gf (ii) g ⁻¹ f (iii) f ⁻¹ g	B1 B1 B1
2 [4]	$\cot x = \cos x / \sin x$	B1
	$\cos x \cot x + \sin x = \cos^2 x / \sin x + \sin x = (\cos^2 x + \sin^2 x) / \sin x$	M1
	= $1 / \sin x = \csc x$	M1 A1
3 [4]	$x - \frac{1}{2}$	M1 A1
	$\left[\right]_{0}^{\pi/6} = (-0) - (-\sqrt{3}/4) = \sqrt{3}/4 (\approx 0.433)$	M1 A1
4 [5]	(i) Resultant velocity = 90 / 60 = 1.5 $V = \sqrt{1.5^2 + 2^2} = 2.5$	B1 M1 A1
	(ii) $\Theta = \tan^{-1} 0.75$ (or $\sin^{-1} 0.6$ or $\cos^{-1} 0.8$) $\approx 36.9^{\circ}$ (or 143.1°)	M1 A1
5 [7]	$2x^{2} - (14 - 2x)^{2} = 2x(14 - 2x) - 6 \qquad [or via x = (14 - y)/2]$	M1
	$2x^2 + 28x - 190 = 0$ [or $y^2 - 56y + 208$]	A1
	2(x+19)(x-5) [or (y-52)(y-4)]	M1
	x = -19, 5 $y = 52, 4$ [or (-19, 52), (5, 4)]	A1 A1
	$AB = \sqrt{(-19 - 5)^2 + (52 - 4)^2} = \sqrt{24^2 + 48^2} = 24\sqrt{1^2 + 2^2} = 24\sqrt{5}$	M1 A1
6 [7]	(i) $dy/dx = 3x^2 + a \implies 3 = 12 + a = 7 = 8 + 2a + b$	M1 M1 B1
	Solving for <i>a</i> and <i>b</i> $\Rightarrow \begin{cases} a = -9 \\ b = 17 \end{cases}$	M1 A1
	(ii) Solve $3x^2 - 9 = 3 \implies x = -2, y = 27$	M1 A1
7 [7]	(a) $mx - 3 = x + 1/x$	M1
	$(1-m)x^2 + 3x + 1 = 0 \implies 3^2 = 4(1-m) \implies m = -5/4$	M1 A1
	$(1+5/4)x^2 + 3x + 1 = 0 \implies 9x^2 + 12x + 4 = (3x+2)^2 = 0 \implies x = -2/3$	M1 A1
	[or $m = 1 - 1/x^2 = -5/4 \implies x^2 = 4/9 \implies x = -2/3$	
	Or $m = 1 - 1/x^2$	M1
	$x + 1/x = (1 - 1/x^2) x - 3 \implies x = -2/3$	M1 A1
	$m = 1 - 1 + (-2/3)^2 = -5/4$	M1 A1
	(b) $(x+5)(x-3) < 0 \implies x^2 + 2x < 15 \implies c=2, d=15$	M1 A1

Page 5Mark SchemeSyllabusPaperGCE 0 LEVEL - OCT/NOV 200640372

(i) $A^{-1} = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \times \frac{1}{5}$ 4x - y = 8 and $-3x + 2y = -1A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 8 \\ -1 \end{pmatrix} \implies \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 8 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}(ii) B = \begin{pmatrix} -2 & 3 \\ 9 & -1 \end{pmatrix} A^{-1} = \frac{1}{5} \begin{pmatrix} -2 & 3 \\ 9 & -1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$	B1 B1 M1 M1 A1 M1 M1 A1
$A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 8 \\ -1 \end{pmatrix} \implies \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 8 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ (ii) $B = \begin{pmatrix} -2 & 3 \\ 9 & -1 \end{pmatrix} A^{-1} = \frac{1}{5} \begin{pmatrix} -2 & 3 \\ 9 & -1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$	M1 A1
(ii) $\mathbf{B} = \begin{pmatrix} -2 & 3 \\ 9 & -1 \end{pmatrix} \mathbf{A}^{-1} = \frac{1}{5} \begin{pmatrix} -2 & 3 \\ 9 & -1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$	
	M1 M1 A1
8 3+15	
a) $(2-\sqrt{5})^2 = 9-4\sqrt{5}$ $\frac{8}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}} = 6+2\sqrt{5}$	B1 M1 A1
$9-4\sqrt{5} - (6+2\sqrt{5}) = 3-6\sqrt{5}$	A1
b) $(a^{y+1})^2 = a^{2y+2}$	B1
a: x-2y-2 = 1 $b: -3+x+y = 6$ $x = 7, y = 2$	M1 B1 A1
a) ${}^{9}P_{4}$ [= 9 × 8 × 7 × 6] = 3024	M1 A1
b) Possibilities : 1 C + 4 S 2 C + 3 S	B1 B1
Either $5 \times {}^{8}C_{4}$ [= 350] or ${}^{5}C_{2} \times {}^{8}C_{3}$ [= 560] Both correct	M1 A1
Sum of relevant two terms only = 910	M1 A1
i) $d(e^{-1/2x})/dx = -\frac{1}{2}e^{-1/2x}$	B1
$d(xe^{-1/2x})/dx = e^{-1/2x} + x() = \frac{1}{2}(2-x)e^{-1/2x}$	M1 A1
ii) $d^2y/dx^2 = -\frac{1}{2}e^{-\frac{1}{2}x} + (-\frac{1}{2})(e^{-\frac{1}{2}x} - \frac{1}{2}xe^{-\frac{1}{2}x}) [= -\frac{1}{4}(4-x)e^{-\frac{1}{2}x}]$	M1 A1
ii) dy/dx = 0 when $2 - x = 0 \implies x = 2, y = 2e^{-1}$ [≈ 0.736]	M1 A1
When $x = 2$, $d^2 y/dx^2 < 0$ [= $-\frac{1}{2}e^{1} \approx -0.184$] \Rightarrow maximum	M1 A1
$DN = r \tan \Theta \qquad ON = r \sec \Theta [or \ r/\cos \Theta]$	B1 B1
or $MN = r \sec \theta$ $P = r \tan \Theta + r \sec \Theta - r + r \Theta$	M1 A1
ii) $\Delta OLN = \frac{1}{2}r \times r \tan \Theta$ [or $\frac{1}{2}r \times r \sec \Theta \times \sin \Theta$ or $\frac{1}{2} \times r \sec \Theta \times r \sin \Theta$]	M1
$A = \frac{1}{2}r^2 \tan \Theta - \frac{1}{2}r^2 \Theta$	M1 A1
(iii) $r(2.57+2.76-1+1.2) = 83 \implies r = 15$	M1 A1
iv) $A = \frac{1}{2} \times 15^2 \times (2.57 - 1.2) \approx 154$	A1
	a) $(a^{y+1})^2 = a^{2y+2}$ a: $x-2y-2 = 1$ b: $-3+x+y=6$ $x = 7, y = 2$ b) 9P_4 [= $9 \times 8 \times 7 \times 6$] = 3024 b) Possibilities: $1C+4S$ $2C+3S$ Either $5 \times {}^8C_4$ [= 350] or ${}^5C_2 \times {}^8C_3$ [= 560] Both correct Sum of relevant two terms only = 910 b) $d(e^{-1/2x})/dx = -\frac{1}{2}e^{-1/2x}$ $d(xe^{-1/2x})/dx = e^{-1/2x} + x() = \frac{1}{2}(2-x)e^{-1/2x}$ $d(xe^{-1/2x})/dx = e^{-1/2x} + (-\frac{1}{2})(e^{-1/2x} - \frac{1}{2}xe^{-1/2x})$ [= $-\frac{1}{4}(4-x)e^{-1/2x}$] b) $d^2y/dx^2 = -\frac{1}{2}e^{-1/2x} + (-\frac{1}{2})(e^{-1/2x} - \frac{1}{2}xe^{-1/2x})$ [= $-\frac{1}{4}(4-x)e^{-1/2x}$] c) $d^2y/dx^2 = 0 \implies x = 2, y = 2e^{-1}$ [≈ 0.736] b) When $x = 2, d^2y/dx^2 < 0$ [= $-\frac{1}{2}e^{-1} \approx -0.184$] \implies maximum $LN = r \tan \theta$ $ON = r \sec \theta$ [or $r/\cos \theta$] or $MN = r \sec \theta$ $P = r \tan \theta + r \sec \theta - r + r \theta$ c) $\Delta OLN = \frac{1}{2}r \times r \tan \theta$ [or $\frac{1}{2}r \times r \sec \theta \times \sin \theta$ or $\frac{1}{2} \times r \sec \theta \times r \sin \theta$] $A = \frac{1}{2}r^2 \tan \theta - \frac{1}{2}r^2 \Theta$ c) $r(2.57 + 2.76 - 1 + 1.2) = 83$ \implies $r = 15$

Page 6	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - OCT/NOV 2006	4037	2

12 OR	(i) Midpoint of <i>AB</i> is <i>M</i> (4½, 3) or $x_M = 4\frac{1}{2}$ or $x_C = 4\frac{1}{2}$	B1
	Length of $AB = 3 \implies$ Length of $MC = 4 \implies C$ is $(4\frac{1}{2}, -1)$	M1 A
	(ii) B is midpoint of CD $\Rightarrow \frac{1}{2}(x+4\frac{1}{2})=6, \frac{1}{2}(y-1)=3 \Rightarrow D \text{ is } (\frac{7\frac{1}{2}}{2},7)$	M1 A
	[or $\overrightarrow{BD} = \overrightarrow{CB} = (1\frac{1}{2}, 4)$ M1 \Rightarrow D is $(7\frac{1}{2}, 7)$ A1]	
	(iii) $m_{AC} = -4/1\frac{1}{2} = -8/3$ Eq. of DE is $y-7 = -8/3(x-7\frac{1}{2})$	M1 M1
	When $x = 10$, $y = 7 - 8/3 \times 5/2$ \Rightarrow $k = \frac{1}{3}$	A
	(iv) $m_{CE} = 4/3 + 5\frac{1}{2} = 8/33 \implies m_{CE} \times m_{DE} = 8/33 \times (-8/3) \neq -1$	M1 A1