UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

General Certificate of Education Ordinary Level

MARK SCHEME for the November 2004 question paper

4037 ADDITIONAL MATHEMATICS

4037/01

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW -1,2 This is deducted from A or B marks when essential working is omitted.
- PA -1 This is deducted from A or B marks in the case of premature approximation.
- S -1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX -1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

November 2004

GCE O LEVEL

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 4037/01

ADDITIONAL MATHEMATICS (Paper 1)

Page 1	Mark Scheme	Syllabus	Paper
GCE O LEVEL – NOVEMBER 2004 40		4037	1

				1
1		OA = i + 9j OB = 5i - 3j OC = k(i + 3j)		
		AB or BA = 4i – 12j AC or CA = (k – 1)i + (3k – 9)j	M1	For one relevant vector . Must be
		CB or BC = $(5 - k)i - (3k + 3)j$	A1	Any 2 of these correct unsimplified.
		Ratio of i to j is the same \rightarrow k = 2	M1 A1	Using ratio idea (not DM). Co. If use of AB = a–b and correct answer obtained, allow full marks.
		[or m = -3 = (3k + 3) ÷(k − 5) = (3k − 9) ÷ (k − 1) → M1 A1 → k = 2 M1 A1]	[4]	
		[or $(1, 9) \rightarrow (5, -3)$ y = -3x + 12 M1 A1 subs (k, 3k) or solve with y = 3x M1A1]		Drawing M2 A2
2	(i)	P D D	B1 B1	Co.co
		$\begin{array}{c} P \cap D' \cap T' \\ \text{or } P \cap (D \cup T)' \text{ or } D' \cap T' \text{ or } (D \cup T)' \end{array}$		
	(ii)		B1 B1 [4]	Co.co
3		Change to powers of 2. $2^{3x} \div 2^{y} = 2^{6} \rightarrow 3x - y = 6$	M1 A1	Needs to try all terms as powers of 2 and have \pm . Co
		Change to powers of 3. $3^{4x} \times 3^{-2y+2} = 3^4 \rightarrow 4x - 2y + 2 = 4$	M1 A1	Needs to try all terms as powers of 3 and have \pm . Co with bracket sorted.
		\rightarrow x = 5 and y = 9	A1	Со
		100/2011	[5]	
4		1		
		Let OR = r ½r² (4/3) – ½7² (4/3) = 48	M1 A1	Any use of $\frac{1}{2}r^2\theta$ for M mark. A1 unsimplified, but complete.
		→ r = 11	A1	Co.
		If $x + 7$ for r allow A1 for $x = 4$.		
		Perimeter = 11 × (4/3) + 7 × (4/3) + 2 (11 – 7)	M1 A1√	M1 for any use of s = r θ . A1 $$ unsimplified and $$ on his r or x only.
		\rightarrow 32	A1 [6]	Co – allow anything rounding to 32.0
L			1	۱۱

Page 2	Mark Scheme	Syllabus	Paper
GCE O LEVEL – NOVEMBER 2004		4037	1

5 $(a + x) (1 - 2nx +) = 3 - 41x + bx^2$ B1 Wherever it comes. bx^2 bx^2 B1 Wherever it comes. $a = 3$ B1 Co - anywhere $1 - 2an = -41 \rightarrow n = 7$ M1 A1 Must use 2 terms. Coeff of x^2 is $3 \times 84 - 1 \times 14$ M1 Must use sum of 2 products. $a = 238$ A1 Co. 6 $f(x) = 5 + 3cos4x$ Image: figure 1 + 3cos4x	
term in $x^3 = {}_nC_2 (\pm 2x)^2$ B1Wherever it comes. $\rightarrow a = 3$ B1Co – anywhere $1 - 2an = -41 \rightarrow n = 7$ M1 A1Must use 2 terms.Coeff of x^2 is $3 \times 84 - 1 \times 14$ M1Must use sum of 2 products. $\rightarrow 238$ A1Co.[6]	
$1 - 2an = -41 \rightarrow n = 7$ $Coeff of x^{2} is 3 \times 84 - 1 \times 14$ $\rightarrow 238$ $M1 A1$ $Must use 2 terms.$ $M1 Must use sum of 2 products.$ $A1$ $Co.$ $[6]$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
→ 238 A1 Co. [6]	
[6]	
6 $f(x) = 5 + 3\cos 4x$	
(i) $a = 3$, period = $\frac{1}{2\pi}$ B1 B1 Co. allow 90° for period.	
(ii) max/min x = $\pi/4$ or $2\pi/4$ or $3\pi/4$ \rightarrow max of 8 \rightarrow min of 2 B1 When "8" is used as stationary values of the	
$(\pi/4, 2) (2\pi/4, 8) (3\pi/4, 2)$ B2, 1 $\sqrt{100}$ for 5 ± his "a". [B0 if degrees here	e]
[6] Ignore inclusion of max/min at 0 or	π.
7 (a) $8 \times 8!$ or $\frac{8}{9} \times 9!$ or $9! - 8!$ M1	
$\rightarrow 322\ 560 \qquad \qquad \text{A1} \textbf{[2]} \begin{array}{l} \text{Must be } {}_{n}\text{C}_{r}\text{-} \text{ knows what to do. A} \\ \text{only is ok for 2 marks.} \end{array}$	ns
(b) $\begin{array}{c c} 2G, 1B & {}_5C_2 \times {}_3C_1 = 10 \times 3 = 30 \\ 3G, 0B & {}_5C_3 = 10 \end{array}$ M1 A1 Needs to be a product of ${}_nC_r$'s. Co Anywhere.	
total = sum of these = 40 A1 Co.	
[4]	
8 (i) $y = (3x + 11)/(x - 3)$	
Makes x the subject.M1Good algebra in making x the	
$f^{-1}(x) = (3x + 11)/(x - 3)$ A1 subject.	
f and f ⁻¹ are the same functions.	
$ \begin{array}{c c} \rightarrow \text{ Graph has } y=x \text{ as line of} \\ \text{ symmetry.} \end{array} \begin{array}{c c} B1 \\ \hline \textbf{[3]} \end{array} \begin{array}{c c} \text{Co accept any mention of } y=x. \\ \hline \textbf{[3]} \end{array} $	
(ii) $g(x) = \frac{1}{2}(x-3)$ $g^{-1}(x) = 2x + 3$ $g^{-1}(x) = \frac{1}{2}(x-1)/(x-2)$ B1 Anywhere.	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
[3]	
(iii) $gf(x) = -2 \rightarrow f(x) = g^{-1} (-2)$ B1 However obtained.	
$ \rightarrow x = -2 $ [1]	

Page 3	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – NOVEMBER 2004		1

M1 DM1	Used to eliminate cos completely. Scheme for quadratic.
A1 A1√	Co. $\sqrt{1}$ for 2 nd value from incorrect
[4]	sine. (A1 $$ not given for extra values <u>in the</u> <u>range</u> , but could be given if soln of quadratic led to 2 values of sine<1.)
M1	Use of cot = 1/tan even if "2" removed incorrectly. Not for tan and 2y split.
A1	Co (must be radians) – not for 0.67.
A1√ A1√	For (i) + ½π For (i) + π or (ii) + ½π
[4]	[S–1 for extra values in the range] [sc All answers in degrees B1.]
M1	M1 correct "uv". A1 ok unsimplified.
A1 [2]	
M1 A1 [2]	Not DM – setting his dy/dx to 0 + attempt to solve.
M1 A1 [2]	Use of small increases. Allow for use of dy/dt. $\Delta x = p$ essential for M mark. Alg expression with "p" ok for M1.
M1 A1	∫ is reverse of diff used. A1 needs $1/_3 x^3$
A1	со
[3]	Integration by parts ok. M1 A1 A1.
y M1 DM1	Complete elimination of x or y Soln of quadratic (by scheme)
A1	Co for (9, 7)
PQ	
M1	Use of $m_1m_2 = -1$ with his PQ Use of $(\frac{1}{2}(x_1 + x_2), \frac{1}{2}(y_1 + y_2))$
– 5) A1 M1	Co – unsimplified ok. Simulataneous eqns. Must be with a perp
M1	Any correct method.
d) A1 [9]	Co.
	DM1 A1 A1√ [4] M1 A1 A1 A1 [4] M1 A1 [2] M1 A1 [2] M1 A1 [2] [1] [1] [1] [1] [1] [1] [1] [1

Page 4	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – NOVEMBER 2004	4037	1

12		EITHER		
	(a)	N = 20 000e ^{-0.05n}		
	(i)	n = 10, N = 12 130 or more places.	B1 [1]	Со
	(ii)	$2000 = 20\ 000e^{-0.05n}$ $e^{-0.05n} = 0.1$	M1	Isolating exponential – or taking logs to get 3 terms.
		Take logs n = 45.1 → 2006	M1 A1	Taking logs. Co. needs 2006, not 2005.
			[3]	
	(b)	Put y = 3^{x} $3^{x+1} = 3y$ or $3^{x-1} = \frac{1}{3}y$ $3y - 2 = \frac{8y}{3} \rightarrow y = 6$	M1 A1 A1 A1	Used. For each expression. Co.
		$3^{x} = 6$, $x \lg 3 = \lg 6 \rightarrow x = 1.63$ [or \div by 3^{x-1} M1 A1 $3^{x-1} = 2$ M1 A1]	M1 A1 [6]	Taking logs for his 3 ^x . co.
		[or ÷ by 3 ^{x+1} M1 A1 3 ^{x+1} = 18 M1 A1]		
12		OR		
		$y = e^{\frac{x}{2}} + 3e^{\frac{-x}{2}}$		
	(i)	$dy/dx = \frac{1}{2}e^{\frac{x}{2}} - \frac{3}{2}e^{\frac{-x}{2}}$	B1 B1	Anywhere –
		= 0 when $e^x = 3$	M1	Setting his dy/dx to 0 and reasonable attempt at making e ^x the subject.
		$y = \sqrt{3} + 3 \div \sqrt{3} = 2\sqrt{3}$	A1	Co. Decimal check – A0.
	<i></i>		[4]	
	(ii)	$d^2y/dx^2 = \frac{1}{4}e^{\frac{x}{2}} + \frac{3}{4}e^{\frac{-x}{2}} > 0$, MIN	M1 A1	M1 Reasonable attempt by any
			[2]	method. A1 Correct deduction but needs second differential correct.
	(iii)	$\int \left(e^{\frac{x}{2}} + 3e^{\frac{-x}{2}} \right) dx = 2e^{\frac{x}{2}} - 6e^{\frac{-x}{2}}$	M1 A1	Knowing to integrate for area + any attempt with exponentials. A1 co.
		[] at 1 – [] at 0 = 4 + 2√e - 6√e = 3.66	M1 A1	DM0 if [] at 0 is ignored. Co.
			[4]	

DM1 for quadratic equation.

<u>Formula</u> Equation must be set to 0. Formula must be correct and correctly used, but allow for numerical and algebraic errors.

Brackets Equation must be set to 0. Must be an attempt to get two linear brackets. Each bracket must then be equated to 0 and solved.