UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level
 ADDITIONAL COMBINED SCIENCE
 Paper 2
 October/November 2006
 2 hours 15 minutes
 Additional Materials: Answer Booklet/Paper

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.
Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions.
Write your answers in the spaces provided on the question paper.

Section B

Answer one part of each of the three questions.
Write your answers on the separate answer paper provided.
A copy of the Periodic Table is printed on page 20.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
Section A	
10	
11	
12	
Total	

This document consists of $\mathbf{1 7}$ printed pages and $\mathbf{3}$ blank pages.

www.xtremepapers.net

Section A

Answer all the questions.

> Write your answers in the spaces provided on the question paper.

Fig. 1.1 shows a plant cell.

Fig. 1.1
(a) Name the part of the cell that
(i) controls the movement of substances into and out of the cell,
\qquad
(ii) makes food by the process of photosynthesis.
\qquad
(b) Root hair cells are specialised plant cells.
(i) Which part, labelled in Fig. 1.1, is not present in a root hair cell?
\qquad
(ii) Why is this part not needed in a root hair cell?
\qquad
\qquad
(iii) Explain how the shape of a root hair cell helps it to carry out its function.
\qquad
\qquad
\qquad
(c) Suggest two ways in which animal cells differ from the plant cell shown in Fig. 1.1.
\qquad
\qquad
\qquad

2 A student makes crystals of magnesium sulphate. She follows the procedure shown in step A to step E in Fig. 2.1, but these steps are shown in the wrong order.

A

Add magnesium oxide a bit at a time until it is in excess and stir.

B
 Set aside to cool.

C Filter the mixture into an evaporating dish.

D

Warm $100 \mathrm{~cm}^{3}$ of dilute sulphuric acid.

E

Gently heat to evaporate some of the water.

Fig. 2.1
(a) (i) In the boxes, write the letters of steps $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{E} in the correct order. Step \mathbf{D} has already been written in the correct place for you.

(ii) Suggest how she should separate the crystals of magnesium sulphate from the liquid that is left at the end of this procedure.
\qquad
(b) Magnesium oxide and sulphuric acid react according to this equation.

$$
\mathrm{MgO}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

The crystals that the student makes have the formula $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$.
She uses $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$ sulphuric acid and an excess of magnesium oxide.
(i) Calculate the number of moles of sulphuric acid contained in $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$ sulphuric acid.
moles of sulphuric acid =
(ii) Calculate the maximum mass of anhydrous magnesium sulphate, MgSO_{4}, that could be formed.
Show how you work out your answer.
[A_{r} : Mg,24; O,16; S,32.]
mass of anhydrous magnesium sulphate $=$
(iii) Calculate the maximum mass of crystals of magnesium sulphate, $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$, that the student could obtain.
Show how you work out your answer.
[$\left.A_{\mathrm{r}}: \mathrm{Mg}, 24 ; \mathrm{O}, 16 ; \mathrm{S}, 32.\right]$

3 Fig. 3.1 shows a go-kart accelerating on a level track. The directions and sizes of two forces, A and B, acting on the go-kart are shown by arrows.

Fig. 3.1
(a) The force \mathbf{B}, pushing the go-kart forwards, is from the engine.

What is the cause of the force \mathbf{A}, acting in the opposite direction?
\qquad
(b) While it is accelerating, the force \mathbf{B} pushing the go-kart forwards is greater than the force \mathbf{A} acting in the opposite direction.
Compare the sizes of forces \mathbf{A} and \mathbf{B} when
(i) the go-kart is at a constant speed,
(ii) the go-kart is slowing down.
\qquad
(c) (i) The go-kart and rider have a mass of 150 kg . The acceleration of the go-kart is $2.0 \mathrm{~m} / \mathrm{s}^{2}$.
Calculate the resultant force needed to give this acceleration.
Show how you work out your answer.
force =
\qquad unit
(ii) The energy released from burning the hydrocarbon fuel is greater than the energy needed to produce force \mathbf{B}.
Suggest a reason for this.
\qquad
\qquad

4 Fig. 4.1 shows apparatus used to heat a piece of limestone.

Fig. 4.1
(a) Limestone is calcium carbonate. After the limestone was heated, calcium oxide remained in the crucible.
(i) Write a balanced equation for the reaction that took place when limestone was heated.
\qquad
(ii) What scientific term can be used to describe this reaction?
\qquad
(b) When the calcium oxide had cooled, water was added to it. An exothermic reaction took place, forming calcium hydroxide.
(i) What is the meaning of the term exothermic?
\qquad
(ii) Farmers sometimes spread calcium hydroxide on their fields. Suggest why.
\qquad
\qquad
(c) Calcium carbonate has uses other than the manufacture of calcium hydroxide. State one of these other uses.
\qquad

5 A student investigates the relationship between the current passing through a device and the potential difference across it. He uses the circuit shown in Fig. 5.1.
His results are shown in Fig. 5.2.

Fig. 5.1

potential difference/V	0	2.0	4.0	8.0	10.0	12.0
current/A	0	0.16	0.34	0.64	0.80	0.96

Fig. 5.2
(a) (i) Plot the student's results on the grid.
(ii) Finish the graph by drawing the best line through the points.

(iii) The student did not obtain a result for the current at a potential difference of 6.0 V . Use your graph to predict this result. current at potential difference of $6.0 \mathrm{~V}=$............... A
(b) Use the result shown in Fig. 5.2 at a potential difference of 12.0 V to calculate
(i) the power of the device,
power = \qquad unit. [3]
(ii) the resistance of the device.
resistance $=$
ohms [2]

6 A scientist studying genetics measured the height of ten 18-year-old male students and ten 18-year-old female students. Her results are shown in Fig. 6.1.

height/cm			
male students		female students	
171	177	156	155
173	169	160	158
174	180	164	162
165	173	162	150
174	175	169	166

Fig. 6.1
(a) (i) Calculate the average height of the male students and the average height of the female students. Give your answers to the nearest cm .
average height of male students $=$ \qquad cm
average height of female students $=$ \qquad cm
(ii) Explain why the average height of the male students is greater than the average height of the female students.
\qquad
\qquad
(b) Both of the samples of students, male and female, show a variation in height.
(i) What name is given to this type of variation?
\qquad
(ii) Suggest a reason for this variation, different from your answer to (a)(ii).
\qquad
\qquad

7 A student set up the apparatus shown in Fig. 7.1.

Fig. 7.1
(a) Bubbles of gas are seen around the magnesium.

How could you prove that this gas is hydrogen?
\qquad
\qquad
(b) The reaction of the magnesium produces electrons that will flow through the circuit, producing a current.
Complete this ionic equation to show how these electrons are produced.

$$
\begin{equation*}
\mathrm{Mg} \rightarrow \ldots \ldots \ldots+2 \mathrm{e}^{-} \tag{1}
\end{equation*}
$$

(c) A reading of 2.7 V is shown on the voltmeter.

The student repeats the experiment using zinc in place of magnesium.
(i) Describe two ways that the observations using zinc differ from the observations using magnesium.
\qquad
\qquad
\qquad
(ii) Explain these differences.
\qquad
\qquad
(d) The apparatus shown in Fig. 7.1 could be used as a portable source of electrical energy. Why would this apparatus not be as good for this purpose as a dry cell battery?

8 (a) Each of the two diagrams in Fig. 8.1 shows a ray of light travelling in a glass block. The critical angle for glass is 42°.
Complete the two diagrams to show the paths of the light rays.

Fig. 8.1
(b) Red light has a wavelength of $6.4 \times 10^{-7} \mathrm{~m}$ and a speed of $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

Calculate the frequency of this red light.
Show how you work out your answer.
frequency $=$ \qquad unit

9 Fig. 9.1 compares some daily nutrient and energy requirements of a one-year-old baby with those of a man and a woman, both aged 18 years.

		daily requirement			
age/years	sex	body mass/kg	iron/mg	protein/g	energy/kJ
1	either	7	6	20	3200
18	male	60	10	80	12000
18	female	55	12	58	9000

Fig. 9.1
(a) Calculate the energy requirement to the nearest kilojoule per kg of body mass
(i) for the one-year-old baby,
(ii) for the 18-year-old man.
energy requirement =
\qquad kJ/kg
(b) The energy requirement, per kg, is much larger for the one-year-old baby than for the 18-year-old man.
Suggest why.
\qquad
\qquad
(c) The 18-year-old woman requires more iron per day than the 18 -year-old man. Suggest why.
\qquad
\qquad
\qquad
\qquad
(d) A scientist measured the daily energy requirements of several 18 -year-old men. He found that they varied from 9000 to 15000 kJ . Suggest an explanation for this variation.
\qquad
\qquad
\qquad
(e) Why does the body need protein?
\qquad
\qquad

Section B

Answer one part, (a) or (b) of each of the three questions.
Write your answers on the separate answer paper provided.

10 Either

(a) When the enzyme amylase is added to starch solution under suitable conditions, starch molecules are quickly broken down to maltose. Starch reacts with iodine to give a dark blue/black colour, but maltose does not react with iodine.
(i) Use this information to design an experiment to investigate the effect of an increase in temperature on the activity of amylase. Describe clearly how you would carry out the experiment and give the results you would expect.
(ii) Explain why an increase in temperature has an effect on the enzyme activity.

Or
(b) Cigarette smoking is associated with an increased risk of coronary heart disease.
(i) State other health problems that are thought to be caused by cigarette smoking and suggest what measures might be taken by government to reduce the harmful effects of smoking on health.
(ii) Describe coronary heart disease. Suggest other factors, in addition to cigarette smoking, that contribute to this disease.

11 Either
(a) (i) List the gases that are found in normal air, and give its approximate composition by percentage volume.
Give examples of the uses of two of the gases present in the air.
(ii) Name one major pollutant of air.

State the source of this pollutant and describe the problems that it causes.

Or
(b) (i) Describe how the unsaturated hydrocarbons called alkenes are manufactured and explain why they are useful industrial chemicals.
(ii) Construct an equation for the formation of poly(ethene) and describe some uses of this polymer.

12 Either
(a) (i) Describe how you would show that a bar magnet will induce an electric current in a coil of copper wire.
State two factors that affect the magnitude of the induced e.m.f.
(ii) Explain how the principle of electromagnetic induction is used in an a.c. generator. [4]

Or
(b) (i) List three ways of transfer of thermal energy. For each of these ways of energy transfer state which take place in a solid, in a liquid, and in a gas.
(ii) Fig. 12.1 shows the outline of a house in a hot country. Air conditioning maintains the temperature in the house at $20^{\circ} \mathrm{C}$, whilst the temperature outside the house is usually between 25 and $35^{\circ} \mathrm{C}$. The air conditioning has to be run continuously because heat energy is transferred into the house.

Fig. 12.1
State and explain three ways to reduce the transfer of heat into the house.

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

www.xtremepapers.net

20

