THREE-YEAR SEQUENCE FOR HIGH SCHOOL MATHEMATICS COURSE III

Wednesday, June 21, $2000-1: 15$ to $4: 15$ p.m., only

Notice . . .

Scientific calculators must be available to all students taking this examination.

The formulas which you may need to answer some questions in this examination are found on page 2. The last page of the booklet is the answer sheet. F old the last page along the perforations and, slowly and carefully, tear off the answer sheet. Then fill in the heading of your answer sheet.

When you have completed the examination, you must sign the statement printed at the end of the answer paper, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer paper cannot be accepted if you fail to sign this declaration.

Part I

Answer 30 questions from this part. E ach correct answer will receive 2 credits. No partial credit will be allowed. Write your answers in the spaces provided on the separate answer sheet. Where applicable, answers may be left in terms of π or in radical form. [60]

1 In $\triangle A B C, \sin A=0.3, \sin B=0.8$, and $b=12$. Find the length of side a.

2 If $f(x)=\sin 2 x+\cos x$, find $f\left(\frac{\pi}{2}\right)$.

3 An angle inscribed in a circle measures 80 degrees. W hat is the number of degrees in the intercepted arc?

4 In $\triangle A B C, a=1.3, b=2.4$, and $m \angle C=30$. F ind the area of $\triangle A B C$.

5 Solve for $x: \quad 9^{2 x}=27^{x+1}$

6 If $\sin A<0$ and $\cot A>0$, in which quadrant does the terminal side of $\angle \mathrm{Alie}$?

7 A translation maps $P(3,-2)$ to $P^{\prime}(1,1)$. Under the same translation, find the coordinates of Q^{\prime}, the image of $Q(-3,2)$.

8 F actor completely: $9 x^{3}-x$

9 Solve for all values of x : $\quad|2 x+3|=7$

10 If $\mathrm{g}(\mathrm{x})=36^{\mathrm{x}}$, evaluate $\mathrm{g}\left(-\frac{1}{2}\right)$.
11 E valuate: $2 \sum_{n=1}^{4} n^{2}$
12 Express in simplest form: $\frac{\frac{x-y}{y}}{\frac{1}{y}-\frac{1}{x}}$
13 Express $\sqrt{-2}+\sqrt{-18}$ as a monomial in terms of i.

14 In a circle whose radius is 2 centimeters, a central angle intercepts an arc of 6 centimeters. What is the number of radians in the central angle?

15 Determine the maximum number of triangles possible when $m \angle A=150, a=14$, and $b=10$.

16 Solve for $x: \quad x-1=\sqrt{2 x+13}$

Directions (17-35): F or each question chosen, write on the separate answer sheet the numeral preceding the word or expression that best completes the statement or answers the question.

17 Which transformation is not an isometry?
(1) dilation
(3) reflection
(2) rotation
(4) translation

18 The expression $\sin \theta(\cot \theta-\csc \theta)$ is equivalent to
(1) $\cos \theta-\sin ^{2} \theta$
(3) $-\sin \theta$
(2) $2 \cos \theta$
(4) $\cos \theta-1$

19 Which equation is sketched in the accompanying graph?

(1) $y=\cos \frac{1}{2} x$
(3) $y=2 \cos \frac{1}{2} x$
(2) $y=\frac{1}{2} \cos x$
(4) $y=2 \cos 2 x$

20 As angle x increases from $\frac{\pi}{2}$ to π, the value of $\sin x$ will
(1) increase from -1 to 0
(2) increase from 0 to 1
(3) decrease from 0 to -1
(4) decrease from 1 to 0

21 Which graph represents the solution set for the inequality $x^{2}-x-20<0$?
(1)

(2)

(3)

(4)

22 If the fraction $\frac{123}{10,000}$ is expressed in the form 1.23×10^{n}, the value of n is
(1) -1
(3) -3
(2) -2
(4) -4

23 If $f(x)=\sin (\operatorname{Arctan} x)$, the value of $f(1)$ is
(1) $\sqrt{2}$
(3) $\frac{\sqrt{3}}{2}$
(2) $\frac{\sqrt{2}}{2}$
(4) $\frac{\sqrt{3}}{3}$

24 A solution of the equation $\cos 2 \theta+\sin 2 \theta=-1$ is
(1) 240°
(3) 45°
(2) 135°
(4) -30°

25 In circle $0, \overline{\mathrm{PA}}$ and $\overline{\mathrm{PB}}$ are tangent to the circle from point P. If the ratio of the measure of major $\operatorname{arc} A B$ to the measure of minor arc $A B$ is $5: 1$, then $\mathrm{m} \angle \mathrm{P}$ is
(1) 60
(3) 120
(2) 90
(4) 180

26 Which equation is not a function?
(1) $3 x^{2}+4 y^{2}=12$
(3) $y=2^{x}$
(2) $y=2 \cos x$
(4) $y=\log _{2} x$

27 When the sum of $4+6 i$ and $6-8 i$ is graphed, in which quadrant does it lie?
(1) \mid
(3) 111
(2) II
(4) IV

28 In the accompanying diagram, point $P(-0.6,-0.8)$ is on unit circle 0 .

What is the measure of angle θ to the nearest degree?
(1) 143
(3) 225
(2) 217
(4) 233

29 The expression $\log 12$ is equivalent to
(1) $\log 6+\log 6$
(3) $\log 3-2 \log 2$
(2) $\log 3+2 \log 2$
(4) $\log 3 \cdot \log 4$

30 In the equation $x^{2}-7 x+2=0$, the sum of the roots exceeds the product of the roots by
(1) 9
(3) -9
(2) 5
(4) -5

31 What is the third term in the expansion of $(a-3 b)^{4}$?
(1) $6 a^{2} b^{2}$
(3) $54 a^{2} b^{2}$
(2) $-6 a^{2} b^{2}$
(4) $-54 a^{2} b^{2}$

32 The roots of the equation $2 x^{2}-4 x+k=0$ are real and equal if k is equal to
(1) -2
(3) -4
(2) 2
(4) 4

33 The expression $\cos \left(270^{\circ}-A\right)$ is equivalent to
(1) $\cos A$
(3) $\sin A$
(2) $-\cos A$
(4) $-\sin \mathrm{A}$

34 The scores on a test approximate a normal distribution with a mean score of 72 and a standard deviation of 9 . Approximately what percent of the students taking the test received a score greater than 90 ?
(1) $2 \frac{1}{2} \%$
(3) 10%
(2) 5%
(4) 16%

35 Mr . and Mrs . Douville have six children. What is the probability that there is exactly one female child? [Assume that P (male) $=\mathrm{P}$ (female).]
(1) $\frac{1}{64}$
(3) $\frac{6}{64}$
(2) $\frac{5}{64}$
(4) $\frac{32}{64}$

Answers to the following questions are to be written on paper provided by the school.

Part II

Answer four questions from this part. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. C alculations that may be obtained by mental arithmetic or the calculator do not need to be shown. [40]

36 In the accompanying diagram of circle 0 , tangent $\overline{B A}$, diameter $\overline{A D}$, secant $\overline{B C E}, \overline{A D}$ intersects $\overline{B E}$ at F, chords $\overline{D E}$ and $\overline{D C}$ are drawn, $m \angle A F B=80$, and $m \overparen{A C}=100$.

Find:
a $m \angle B E D$
[2]
b $m \angle B A F$
[2]
c mED
[2]
d $m \angle B$
[2]
e $m \angle E D C$
[2]

GO RIGHT ON TO THE NEXT PAGE $\boldsymbol{\square}$

37 a On the same set of axes, sketch and label the graphs of the equations $y=\sin \frac{1}{2} x$ and $y=-3 \cos 2 x$ in the interval $-\pi \leq x \leq \pi$. [8]
b Using the graphs drawn in part a, find the number of values of x in the interval $-\pi \leq x \leq \pi$ that satisfy the equation $\sin \frac{1}{2} x=-3 \cos 2 x$. [2]

38 a Assume that in the U nited States $\frac{1}{5}$ of all cars are red. Suppose you are driving down the highway and you pass 6 cars.
(1) What is the probability that at most one of the cars you pass is red? [3]
(2) What is the probability that at least four of the cars you pass are red? [3]
b The scores on a mathematics test are 42, 51, $58,64,70,76,76,82,84,88,88,90,94,94,94$, and 97 . F or this set of data, find the standard deviation to the nearest tenth. [4]

39 Find all values of x in the interval $0 \leq x<360^{\circ}$ that satisfy the equation $4 \cos ^{2} x-5 \sin x-5=0$. E xpress your answer to the nearest ten minutes or nearest tenth of a degree. [10]

40 a On the same set of axes, sketch and label the graphs of the equations $x y=8$ and $x=2^{y}$. [6]
b On the same set of axes used in part a, sketch the reflection of $x=2^{y}$ in the line $y=x$. Label it b. [3]
c Write an equation of the graph drawn in part b. [1]

41 a Two forces of 50 pounds and 69 pounds act on a body to produce a resultant of 70 pounds. Find, to the nearest tenth of a degree or nearest ten minutes, the angle formed between the resultant and the smaller force. [6]
b F or all values of θ for which the expressions are defined, prove the following is an identity:

$$
(\cot \theta+\csc \theta)(1-\cos \theta)=\sin \theta
$$

42 a Solve for x and express your answer in simplest $a+b i$ form:

$$
\begin{equation*}
x^{2}-10 x=-41 \tag{6}
\end{equation*}
$$

b Express in simplest form:

$$
\begin{equation*}
\frac{81-x^{2}}{6 x-54} \div \frac{x^{2}+9 x}{3 x} \tag{4}
\end{equation*}
$$

The University of the State of New York

Regents High School Examination

SEQUENTIAL MATH - COURSE III

Wednesday, June 21, 2000 - 1:15 to 4:15 p.m., only

Part I Score
Part II Score
Total Score
Rater's Initials:

ANSWER SHEET

Pupil	Sex: \square M ale \square Female			Grade
Teacher	School			
	Your answers to Part I should be recorded on this answer sheet.			
	Part I			
	Answer 30 questions from this part.			
1	11.	21	31
2	12.	22	32	. . .
3	13.	23	33	.
4	14.	24	34	. . .
5	15.	25	35
6	16.	26		
7	17.	27		
8	18.	28		
9	19.	29		
10	20.	30		

Your answers for Part II should be placed on paper provided by the school.
The declaration below should be signed when you have completed the examination.
I do hereby affirm, at the close of this examination, that I had no unlawful knowledge of the questions or answers prior to the examination and that I have neither given nor received assistance in answering any of the questions during the examination.

