GAUTENG DEPARTMENT OF EDUCATION
 SENIOR CERTIFICATE EXAMINATION

WOODWORKING SG
TIME: 3 hours
MARKS: 200

REQUIREMENTS:

- Front page of answerbook
- Drawing instruments
- Drawing paper A3

INSTRUCTIONS:

- Answer any FIVE questions.
- Write your examination number in the title block on the Drawing paper.
- Drawings are to be fully dimensioned and finished with titles and notes which conform with the SABS recommended practice for building drawing.
- Circle questions answered on the front page.

QUESTION 1

1.1 Write down TEN safety precautions which are applicable to woodworking machines.

1.2 Write down FIVE advantages of a setting-out rod.
1.3 Write down FIVE advantages of a cutting list.
1.4 Describe FIVE main gradings under which wood used for industrial purposes is classified.
1.5 Write down FIVE characteristics of a good machine guard.

QUESTION 2

A South African type roof truss has a pitch of 30° and is made of $115 \mathrm{~mm} \times 38 \mathrm{~mm}$ timber. The roof is covered with $400 \mathrm{~mm} \times 230 \mathrm{~mm} \times 12 \mathrm{~mm}$ thick roofing tiles fixed to $38 \mathrm{~mm} \times 38 \mathrm{~mm}$ tile battens with a gauge of 340 mm . The overhang of the closed eaves project 450 mm and are finished off with $50 \mathrm{~mm} \times 19 \mathrm{~mm}$ soffit battens. The roof is supported by $110 \mathrm{~mm} \times 38 \mathrm{~mm}$ wall-plates on 220 mm brick walls plastered on the inside.
2.1 Draw to a scale of 1:5 a vertical section through the closed eaves showing all details, including not less than three rows of roofing tiles, fascia board $230 \mathrm{~mm} x$ 25 mm , a $115 \mathrm{~mm} \times 115 \mathrm{~mm}$ gutter and a short length of the downpipe. The drawing must also include a portion of the ceiling, consisting of 6 mm thick ceiling board fixed to $38 \mathrm{~mm} \times 38 \mathrm{~mm}$ brandering and finished off with a 125 mm cove cornice.

QUESTION 3

The components of a double casement window with a frame have the following dimensions:

The head, stiles and mullion of the frame are $115 \mathrm{~mm} \times 75 \mathrm{~mm}$. The dimensions of the transom are $130 \mathrm{~mm} \times 75 \mathrm{~mm}$ and those of the sill $150 \mathrm{~mm} \times 75 \mathrm{~mm}$. The stiles and top rails of the sashes are $50 \mathrm{~mm} \times 45 \mathrm{~mm}$, and the bottom rails are $65 \mathrm{~mm} \times 45 \mathrm{~mm}$.

Draw to a scale of 1:2 the following:
3.1 A vertical section through the head of the frame and top rail of the fanlight
3.2 A vertical section through the bottom of the fanlight, the transom, and the top rail of the sash
3.3 A vertical section through the bottom rail of the sash and the sill
3.4 A horizontal section through the mullion and the adjacent sash stiles

QUESTION 4

Draw the following details of wall panelling:
4.1 To a scale of $1: 5$
4.1.1 a vertical section to illustrate the construction at the top of strip-board panelling.
4.1.2 a vertical section to illustrate the construction at the bottom of strip-board panelling.
4.2 To a scale of $1: 2$
4.2.1 a horizontal section through two strip-boards to illustrate secret nailing.
4.2.2 a horizontal section to illustrate the joint between two plywood panels.
4.3 Describe what is meant by the term beam filling and give the purpose of it.
4.4 State TWO reasons why it is necessary to wear overalls in the woodworking centre.

QUESTION 5

5.1 Draw to a scale of 1:10, a side elevation of a single raking shore's top construction to support the wall of a second storey. The width of the wall is 330 mm and a 100 mm concretefloor rests 110 mm on the wall.

RAKING SHORE	$=$	228 mm	x	228 mm		
NEEDLE	$=$	300 mm	x	100 mm	x	100 mm
CLEAT	$=$	200 mm	x	100 mm	x	100 mm
WALL-PLATE	$=$	228 mm	x	75 mm		

QUESTION 6

A garage with internal dimensions of $6000 \mathrm{~mm} \times 6000 \mathrm{~mm}$ and with 220 mm thick external walls is to be covered with a pitched roof with gables. The roof has slope of 30° and eaves with a 600 mm overhang. The gables are built higher than the roof covering. The roof is covered with cement tiles, supported by $38 \mathrm{~mm} \times 38 \mathrm{~mm}$ brandering, spaced at 300 mm centres. The eaves are finished off with a $75 \mathrm{~mm} \times 50 \mathrm{~mm}$ tilting fillet and a $230 \mathrm{~mm} \times 38 \mathrm{~mm}$ fascia board. The trusses are made of $115 \mathrm{~mm} \times 38 \mathrm{~mm}$ material and are spaced at 750 mm centres. The trusses are supported at the external walls by $115 \mathrm{~mm} \times 38 \mathrm{~mm}$ wall-plates.
6.1 Draw to a scale of 1:20 part of the elevation of one roof truss, with one of the wall-plates in position and a portion of one external wall.
6.2 Prepare a cutting list of the material required to make one roof truss.
6.3 Calculate, in running metres, the quantity of material required to make all the roof trusses.
6.4 Determine, in running metres, the length of the fascia boards, tilting fillets, wallplates and the total length of brandering required.

QUESTION 7

7.1 A circular table with a diameter of 1300 mm has a turned leg, with a diameter of 150 mm , ending in a hexagon into which three splayed legs are morticed. The top, 25 mm thick, is finished with a thumb mould and has an overhang of 25 mm . The table has a $75 \mathrm{~mm} \times 40 \mathrm{~mm}$ built-up rail, covered with 3 mm thick plywood. The splayed legs are 40 mm thick and stand on a circle with a diameter of 900 mm . The total height of the table is 760 mm .

To a scale of 1:10, draw a front view of the table with part of the plywood removed to show the built-up rail.
7.2 To a scale of 1:1, draw a vertical section through the built-up rail and a portion of the top. Clearly show a method of fixing the top to the rail.

