GAUTENG DEPARTMENT OF EDUCATION SENIOR CERTIFICATE EXAMINATION

WELDING AND METALWORKING SG

2

OCTOBER / NOVEMBER 2005 OKTOBER / NOVEMBER 2005

TIME: 3 hours

MARKS: 200

REQUIREMENTS:

- Drawing answer book 716-2/X
- Drawing instruments and an approved pocket calculator

INSTRUCTIONS:

- Answer all questions in the drawing answer book 716-2/X.
- Answer only FIVE questions.
- Section A is COMPULSORY.
- Answer only FOUR questions from Section B.
- Only the first FIVE questions will be marked.

SECTION A COMPULSORY

QUESTION 1

- 1.1 Indicate whether the following statements are TRUE or FALSE by making an (X) in the appropriate block on the answer sheet.
 - 1.1.1 With reference to the iron-carbon equilibrium diagram, carbon steel that is heated to above the upper critical point consists mainly of austenite.
 - 1.1.2 A characteristic of case hardening is that the core remains soft whilst the outer core is hard.
 - 1.1.3 Normalising is applied to steel that is subjected to internal stresses.
 - 1.1.4 The tensile test, the bend test and the nick break test are known as destructive tests.
 - 1.1.5 Poor root penetration in a weld is caused by no or insufficient bevelling.
 - 1.1.6 Electrodes are more effective if they are kept cool.

- 1.1.7 The metric unit for Tera is $x10^9$.
- 1.1.8 Carbon does not play an important role during the heat treatment process.
- 1.1.9 A large weld will shrink more than a small weld.
- 1.1.10 Tungsten is added to steel to improve heat and shock resistance. (10)
- 1.2 Each of the following questions has four possible answers of which ONLY ONE is correct. Indicate your answer by making an (X) in the appropriate block on the answer sheet.
 - 1.2.1 A bleeding wound in the workshop is life-threatening to other learners when the _____.
 - A. blood pours onto the work surface
 - B. blood is infected with the HI virus and other learners make contact with the blood without taking the proper precautions
 - C. wound is not treated immediately
 - D. patient is not taken to hospital as soon as possible
 - 1.2.2 Castellated beams are used to increase the depth of a beam by 50%, thereby increasing the _____.
 - A. maintenance of the beam
 - B. welding surface of the beam
 - C. cost of the beam
 - D. load-carrying capacity without increasing the weight
 - 1.2.3 The main purpose of heat treatment of steel is to _____.
 - A. reduce the effective shrinkage force
 - B. make shrinkage forces work to reduce distortion
 - C. give steel specific mechanical and physical properties
 - D. increase the effectiveness of the deposited slag
 - 1.2.4 The ultrasonic test is used to detect weld defects by means of _____.
 - A. high frequency sound waves
 - B. a cathode-ray probe, emitting sound waves to detect the internal flaws
 - C. applying dye to the surface of the weld to detect the internal flaws
 - D. the bend test to detect the internal flaws

- 1.2.5 Surface hardening is carried out on steel with _____.
 - A. a low carbon content
 - B. no carbon content
 - C. a high carbon content
 - D. a high ferrite structure
- 1.2.6 When the welding process is inspected, one of the following should be observed:
 - A. amount of penetration and fusion
 - B. that good lighting is available
 - C. that the parent metal is clamped
 - D. that edge preparation is carried out
- 1.2.7 Tensile testing is known to be a/an _____.
 - A. inexpensive way of testing welds
 - B. accurate way of testing welds
 - C. destructive test that destroys the sample
 - D. very quick method for performing a test
- 1.2.8 Overhead costs can be charged against _____.
 - A. the labour cost only
 - B. the total cost
 - C. the material cost only
 - D. the labour cost or the material cost
- 1.2.9 Distortion of a weld can be decreased by _____.
 - A. using the correct parent metal
 - B. pre-clamping the parent metal
 - C. using a thinner welding rod and a higher current
 - D. using bigger welding electrodes

1.2.10 The safety factor applied to scaffolding is _____.

- A. 2
- B. 4
- C. 8 D. 10
 - 10 (10)

1.3 Choose the correct answer in **Column B** to match the information supplied in **Column A** by writing only the letter of your choice next to the corresponding question number, e.g. 1.3.21 – R in the drawing answer book.

	COLUMN A	COLUMN B			
1.3.1	Some of the elements that are added to steel are	А	kept dry.		
1.3.2	Gloves should be used when	В	the cold-working process.		
1.3.3	At the AC2	С	repeatedly hammered during the cold working of steel.		
1.3.4	The smallest grain structure is obtained when steel reaches the	D	carbon content of the steel.		
1.3.5	Slings should never be	Е	methods used for cooling during the heat-treatment process.		
1.3.6	Scaffold planks should have a factor of safety of at least	F	nick-break test.		
1.3.7	Electrodes are more effective if they are	G	deformation and the original length.		
1.3.8	Scaffolding must be	Н	will cause an undercut.		
1.3.9	Elongated grains are the result of	Ι	1,5 times the diameter of the rivets or bolts used.		
1.3.10	Cold air, oil, water or brine are	J	zinc, chromium or tungsten.		
1.3.11	Carbon steels will work harden if they are	К	inspected at various intervals by a competent person.		
1.3.12	Strain is the ratio between the	L	all steels lose their magnetic properties.		
1.3.13	Ladders must never be in contact with	Μ	dragged against a floor.		
1.3.14	One destructive test used is known as the	Ν	electricity.		
1.3.15	Excessive heat during the welding process	0	heavy plates are rolled or pressed.		
1.3.16	Iron is formed in a	Р	iron oxide in steel.		
1.3.17	Oxygen forms	Q	AC3.		
1.3.18	During the hardening process the final temperature will depend on the	R	6 times its strength.		
1.3.19	Back marks are	S	weld away from the gas bottles.		
1.3.20	During gas welding	Т	blast fumace.		

(20)

TOTAL FOR SECTION A: [40]

SECTION B

Answer any FOUR questions from this section.

QUESTION 2

2.1 **Figure 1** shows a space diagram of a framework with three vertical loads. The beam is 10 metres long and the angles BJA and HJA are 45°.

Figure 1

- 2.1.1 Indicate by means of calculation that the left and right reaction forces are 32,5 N and 27,5 N respectively. (6)
- 2.1.2 Draw the force diagram by using a scale of 2 mm: 1 N. (12)
- 2.1.3 Indicate the nature of the forces on the given diagram. (10)
- 2.1.4 Determine graphically by means of the vector diagram the magnitude and nature of the forces in each member of the framework. Complete the table below in the drawing answer book.

MEMBER	MEASUREMENT	FORCE	NATURE	
GF				
HJ				
FE				
FA				(12

[40]

6

QUESTION 3

3.1 **Figure 2** represents a cantilever with a span of 10 metres. The cantilever is subjected to three vertical point loads. Draw the space diagram to the given scale in the drawing answer book and do the following:

Calculate the

3.1.1	bending moments at points A, B, C and D.	(8)
3.1.2	shear forces for the beam at points A , B , C , and D .	(8)

Draw the

3.1.3	bending moment diagram to the given scale.	(6)
3.1.4	shear force diagram to the given scale.	(6)

USE THE FOLLOWING SCALES

Space diagram Bending moment diagram Shear force diagram 1 cm = 1 m 5 mm = 15 kNm (1 mm = 3 kNm) 2 mm = 1 kN

Figure 2

- 3.2 **Figure 3** shows a simple supported beam that is 8 metres long. The beam carries two vertical point loads as well as a distributed load of 1 kN/m over the indicated 5 metre section of the beam.
 - 3.2.1 Convert the distributed load to a point load. (2)
 - 3.2.2 Calculate the left and right reaction forces of the beam. (10)

QUESTION 4

4.1	A tensile force of 120 kN causes a steel bar with a length of 300 mm and a diameter of 12 mm to stretch 15 mm.						
	4.1.1	Prove by means of calculation that the stress in the bar is 1,06 GPa.	(8)				
	4.1.2	Prove by means of calculation that the strain in the bar is 50×10^{-3} .	(4)				
	4.1.3	Calculate the value of Young's Modulus.	(4)				
4.2	A steel bar was subjected to a tensile test and the force needed for the test was recorded as 40 kN. The internal stresses during the test were 127,32 MPa.						
	Calcula	te the					
	4.2.1	cross-sectional area of the bar.	(5)				
	4.2.2	diameter of the bar.	(6)				
4.3	Name any FOUR non-destructive tests. (4)						
4.4	Name any TWO destructive tests. (2)						
4.5	Briefly describe the dye-penetrant test. (7)						
	Formulas						

$$Cross-sectional area \ (m^{2}) = \frac{\pi (D)^{2}}{4}$$

$$Stress (Pa) = \frac{Force (N)}{Cross - sectional area (m^{2})}$$

$$Strain = \frac{Change \ in \ length (Deformation) \ (mm) or \ (m)}{Original \ length (mm) or \ (m)}$$

$$Young \ 's \ Modulus \ (Pa) = \frac{Stress (Pa)}{Strain}$$
[40]

8

QUESTION 5

5.1 **Figure 4** shows the front view and the top view of a hopper.

Calculate the

- 5.1.1 true length of the plate YX^1 . (5)
- 5.1.2 true length of BF^1 .
- 5.1.3 Construct the dihedral angle on the joint line AE¹. Use a scale of **1:10** for the construction. (10)

Figure 4

5.5	Name TWO requirements of a template loft.	(2) [40]
5.4	Name THREE materials used for template making.	(3)
5.3	Name FIVE tools used in the template loft.	(5)
5.2	Name FIVE reasons why templates are used.	(5)

(10)

9

10

QUESTION 6

6.1 Figure 5 shows a line diagram of a welded roof truss. The truss consists of 32,6 metre single angles which are made of 76 x 76 x 8 mm angle iron. The cost of the angle iron with a mass of 8,2 kg/m length is R4,30 per kilogram. The total time taken for carrying out the task was 15 hours at a tariff of R72,00 per hour. The overheads are calculated at 120% of the total material cost.

Calculate the

6.1.1	labour cost of the task.	(4)
6.1.2	cost of the material used.	(5)
6.1.3	overhead expenses incurred.	(4)
6.1.4	total cost of the completed roof truss.	(5)

6.2 Figure 6 shows a layout of a simple riveted lattice girder joint. Use a scale of 1:1 to draw the joint and insert the gusset plate. Show only the position of the rivets. The pitch used for the bracing and for the tie beams is 5 d. The landing is $1\frac{1}{2}$ d. The diameters of the rivets are 8 mm. The back mark is 16 mm.

Figure 6

(12)

6.3	Name the information that must appear on a template.						
6.4	Name THREE safety measures for the use of scaffolding.						
6.5	Name	TWO advantages of the use of templates.	(2) [40]				
		QUESTION 7					
7.1	Name FIVE welding defects.						
7.2	Name	FOUR reasons why heat treatment is carried out on carbon steels.	(5)				
7.3	Name	any FIVE elements that are added to steel to alter its properties.	(5)				
7.4	Define	the term elasticity .	(3)				
7.5	Make a full detailed sketch of the carbon equilibrium diagram according to the given scales and answer the following questions:						
	Scales	temperature scale (y-axis) = 1 cm : 50°C (start at 600°C) carbon content (x-axis) = 1 cm : 0,1% carbon					
	7.5.1	At what temperature do all steels undergo a crystal structure change?	(1)				
	7.5.2	To what temperature would you heat steel with a 1% carbon content during the hardening process?	(1)				
	7.5.3	Which cooling method must be used during the hardening process?	(1)				
	7.5.4	Which cooling method is used during normalising?					
	7.5.5	At which temperature do we find the AC ₂ ?	(1)				
	7.5.6 What determines the final temperature during heat treatment?						
	7.5.7	Name THREE liquids used for quenching.	(3) [40]				
		TOTAL FOR SECTION B:	[160]				
		TOTAL:	200				

SENIOR CERTIFICATE EXAMINATION SENIORSERTIFIKAAT-EKSAMEN

OCTOBER / NOVEMBER *OKTOBER / NOVEMBER*

2005

WELDING AND METALWORKING SWEIS EN METAALBEWERKING

> ANSWER BOOK ANTWOORDBOEK

Cover + 7 pages / Voorblad + 7 bladsye

QUESTION / VRAAG 1.1

Indicate	Indicate your choice with a X							
Dui jou l	keuse aan met	'nX						
	TRUE	FALSE						
	WAAR	ONWAAR						
1.1.1								
1.1.2								
1.1.3								
1.1.4								
1.1.5								
1.1.6								
1.1.7	1.7							
1.1.8	8							
1.1.9	1.9							
1.1.10	1.1.10							

QUESTION / VRAAG 1.2

Indicate your cho	oice w	vith a	Х	
Dui jou keuse aar	n met	'nX		
	A	B	C	
1.2.1				
1.2.2				
1.2.3				
1.2.4				
1.2.5				
1.2.6				
1.2.7				
1.2.8				
1.2.9				
1.2.10				

REMARK ONLY / SLEGS HERMERK						Question	NORN	IAL MA	ARKINC	G/NOR	MALE I	MERK
Ma	Marks / Punte		Initi	ials / Pa	raaf	Vraag	Ma	rks / Pu	inte	Initi	ials / Pa	raaf
Η	T	U	Mark	Mod	Cont	Viaag	Η	Т	U	Mark	Mod	Cont
						1						
						2						
						3						
						4						
1						5						
						6						
						7						
<u></u>												
			1			Total						
						Totaal						

EXAMINATION NUMBER EKSAMENNOMMER

CENTRE NUMBER SENTRUMNOMMER

QUESTION / VRAAG 1

QUESTION / VRAAG 1.3

Indicate your choice Dui jou keuse aan

1.3.1	
1.3.2	
1.3.3	
1.3.4	
1.3.5	
1.3.6	
1.3.7	
1.3.8	
1.3.9	
1.3.10	
1.3.11	
1.3.12	
1.3.13	
1.3.14	
1.3.15	
1.3.16	
1.3.17	
1.3.18	
1.3.19	
1.3.20	

WELDING AND METALWORKING SG - 716 - 2/X SWEIS EN METAALBEWERKING SG - 716 - 2/X

EXAMINATION NUMBER	
EKSAMENNOMMER	

CENTRE NUMBER

ANSWER / ANTWOORD 2.1.4			
MEMBER	MEASUREMENT	FORCE	NATURE
ONDERDEEL	AFMETING	KRAG	AARD
GF			
HJ			
FE			
FA			

ANSWER / ANTWOORD 2.1.1 MOMENTE OM LR / MOMENTS AROUND LR

ANSWER / ANTWOORD 2.1.1

MOMENTE OM RR / MOMENTS AROUND RR

3.1.1 BENDING MOMENT / BUIGMOMENTE		
BM (A) =	-	
BM (B) =		s
BM(C) =		
		BENDING
BM(D) =	0 —	
3.1.2 SHEAR FORCES / SKUIFKRAGTE		
SF /SK (D) =		
SF /SK (C) =		
SF / SK (B)		
SF/SK (A)		
QUESTION / VRAAG 3.2		
2 2 1 CONVERSION / OMSKAKELING		
3.2.1 CONVERSION / DIVISRARELING		
REDRAW DIAGRAM / HERTEKEN DIE DIAGRAM		
3.2.2 MOMENTS AROUND R (FOR L) / MOMENTE OM R (VIR L) 3.2.2 MOMENTS AROUND L (FOR R) / MOMENTE OM R (VIR R)	
	0	
		SHEAR
EXAMINATION NUMBER CENTRE NUMBER OCTOBER / NOVEMBER 2005	SENIOR CERTIFICATE EXA	

	 4.2.2 DIAMETER	
4.1.2 STRAIN / VORMVERANDERING		

			QUESTION 5 /VRAAG 5
5.1.1	FOR TLYX ¹ / VIR WLYX ¹	5.2	
		A)	
		-	
		B)	
		- C)	
		D)	
		E)	
		_	
		5.3	
5.1.2	FOR TL BF ¹ / WARE LENGTE BF ¹	A) _	
		B) _	
		C) _	
		- D)	
		E)	
		5.4	
<u></u>		-	
		2, _ ()	
		- 55	
		-	
<u></u>		-	
		B)	
			
<u></u>		-	DISTRICT DISTRIK
EXAMINATI	ON NUMBER	- CENTRE NUMBER OCTOBER / NOVEMBER 2005 SENIOR CERTIFICATE EXAMINATION SENTRUMNOMMER OKTOBER / NOVEMBER 2005 SENIORSERTIFIKAAT-EKSAMEN	WELDING AND METALWORKING SG - 716 - 2/X SWEIS EN METAALBEWERKING SG - 716 - 2/X 5

		DER OCTOBER / NOVEMBER 2005 SENIOR CERTIFICATE EXAMINATION
		6.2 GUSSET PLATE / KNOOPF
6.1.4 TOAL COST / TOTALE KOSTE]	
6.1.3 OVERHEAD COST / DRAKOST	Ъ.	
		b)
		c)
6.1.2 COST OF MATERIAL / MATER	NAALKOSTE	6.4 a)
		e)
		d)
i		b)
6.1.1 LABOUR COST / ARBEIDSKOS	STE	6.3 a)

QUESTION 6 / VRAAG 6

