## GAUTENG DEPARTMENT OF EDUCATION

### SENIOR CERTIFICATE EXAMINATION

## **TECHNIKA (MECHANICAL) SG**

# POSSIBLE ANSWERS OCT / NOV 2006

#### **QUESTION 1**

| 1.1.1 | The sy                                       | mbol of the struggle around HIV/Aids                                                                                                                                                                                                                                                                                        | (2) |
|-------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1.1.2 | Videos<br>Cours<br>Adver<br>Trainir<br>Speak | es<br>tising<br>ng                                                                                                                                                                                                                                                                                                          | (5) |
| 1.1.3 | A nee<br>Trans                               | e sex with an HIV positive person<br>dle shared with an HIV positive person<br>mitted from an HIV positive mother to her unborn baby<br>lood of an HIV positive person entering your body through a cut on your skin                                                                                                        | (4) |
| 1.2   | 1.2.1                                        | ACME-screw thread                                                                                                                                                                                                                                                                                                           | (2) |
|       | 1.2.2                                        | 29°                                                                                                                                                                                                                                                                                                                         | (1) |
|       | 1.2.3<br>•<br>•                              | Where it is necessary to reduce backlash<br>To transmit motion to slides and carriages e.g. machine-table screws<br>To prevent seizing and fouling of the thread due to sagging e.g. long-lead<br>screws<br>Engaging mechanisms, such as the half-nut of a lathe<br>For cross-slide screws, lifting jacks, and brake screws | (3) |
|       | 1.2.4                                        | More economical to produce                                                                                                                                                                                                                                                                                                  | (2) |
| 1.3   | 1/3/1                                        | Square screw thread                                                                                                                                                                                                                                                                                                         | (2) |
|       | 1.3.2                                        | The pitch, P, of a screw thread is the distance from a point on a thread to a corresponding point on an adjacent thread, measured parallel to the axis of the screw.                                                                                                                                                        | (3) |
|       | 1.3.3                                        | The lead of a screw thread is the distance that the nut will move along its axis, when turned through one complete revolution. The lead and the pitch of a single-start thread are equal.                                                                                                                                   | (3) |

(3)

- 1.3.4 The angle ?, of a screw thread is the included angle formed between the sides of a thread.
- 1.3.5 The depth, D, of a thread is half the difference between the major diameter and the minor diameter of the thread.

|                 | Depth           | ofthre               | ead : D =                                                 | $D_2 - 2$ | $D_1$ |                                                                          | (3) |
|-----------------|-----------------|----------------------|-----------------------------------------------------------|-----------|-------|--------------------------------------------------------------------------|-----|
| 1.3.6           | Depth           |                      |                                                           | =         |       | Pitch<br>2                                                               |     |
|                 |                 |                      | =                                                         | 6<br>2    |       |                                                                          |     |
|                 |                 |                      | =                                                         | 3 mm      | I     |                                                                          | (6) |
| 1.3.7           | Where           | e rapid              | motion is re                                              | quired.   |       |                                                                          | (2) |
| 1.3.8<br>•<br>• | Set ov<br>Accur | ver of c<br>ate slot | of change wi<br>ompound sl<br>tted driving j<br>ng plate. | ide       |       |                                                                          | (4) |
| 1.3.9<br>•<br>• |                 |                      | w thread<br>screw thread                                  | d.        |       |                                                                          | (2) |
| 1.4             | No ma           | aterial              | removal.                                                  |           |       |                                                                          | (2) |
| 1.5             | Mater           | ial rem              | oval.                                                     |           |       |                                                                          | (2) |
| 1.6             | No se           | condar               | y processes                                               | 3.        |       |                                                                          | (2) |
| 1.7             | 1.7.1           | (a)<br>(b)<br>(c)    | Elastic limi<br>Yield point<br>Limit of pro               |           | ality | /                                                                        | (3) |
|                 | 1.7.2           |                      |                                                           |           |       | in is proportional to the stress producing it, on ality is not exceeded. | (4) |

| 1.8  | 1.8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.<br>2.<br>3.<br>4. |          | ary ca<br>gear |          |                                               | (4) |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|----------------|----------|-----------------------------------------------|-----|
|      | 1.8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (a)                  | two co   | ompor          | nents is | s closed and the third is driven. Reduction   | (4) |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b)                  | compo    | onents         | s are d  |                                               | (4) |
| 1.9  | 1.9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mome                 | ent :    | =              | Force    | x perpendicular distance m                    |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | :        | =              | 50 N 3   | x 0,7 m                                       |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | :        | =              | 35 Nr    | n                                             | (4) |
|      | 1.9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |          |                |          |                                               |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | point.               |          |                | Sumo     | The left hand moments around the same turning | (4) |
| 1.10 | Tensi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lestres              | S        |                |          |                                               | (2) |
| 1.11 | <ul> <li>3. Planet gear</li> <li>4. Sun gear</li> <li>1.8.2 (a) The planet gear frame is connected to the output axle. One of the two components is closed and the third is driven. Reduction occurs at the planet.</li> <li>(b) When the planet gear frame is driven while the other two components are closed, an overdrive will occur at the third component.</li> <li>1.9.1 Moment = Force x perpendicular distance m <ul> <li>a 50 N x 0,7 m</li> <li>a 35 Nm</li> </ul> </li> <li>1.9.2 A system of forces is in equilibrium when the sum of the right-hand moment equals the sum of the left-hand moments around the same turning point.</li> <li>Tensile stress</li> <li>Shearing stress</li> <li>Compressive stress</li> <li>1.13.1 Working stress = Ultimate stress Factor of safety <ul> <li>a 80 / 4</li> </ul> </li> </ul> |                      |          |                | (2)      |                                               |     |
| 1.12 | Comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pressive             | e stress |                |          |                                               | (2) |
| 1.13 | 1.13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Worki                | ng stres | S              | =        |                                               |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |          |                | =        |                                               |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |          |                | =        | 20 MPa                                        | (3) |
|      | 1.13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 Stress             | 6        |                | =        |                                               |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | I        | F              | =        | Stress x A                                    |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |          |                | =        | $20 \times \frac{\pi \times 20 \times 20}{4}$ |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | l        | F              | =        | <u>6283,18 N</u>                              | (4) |

(4)

1.13.3 Change in Strain x original length = length Stress x 500 = Ε 20 80 x 10<sup>3</sup> x 500 = 10 = 80 Change in Length 0,125 m = (7)[100]

## **QUESTION 2**

| 2 |   | 1 |  |
|---|---|---|--|
| _ | - |   |  |

- Deafness: noise
- Dermatitis (skin disease): irritating substances and materials
- Tuberculosis: insufficient ventilation
- Blindness: insufficient safety precautions
- Heat exhaustion: insufficient ventilation
- Poisoning: insufficient control measures
- Radiation: insufficient control measures (12)

#### 2.2

- Well trained and intelligent
- Initiative
- Sound judgement
- Healthy human relations, be fair
- 2.3 Planning, Guidance, Organising and Control (4)
- 2.4 Industrial housekeeping means a place for everything and everything in its place. It is necessary for:
- Saving time
- Saving space
- Preventing accidents (5)
  Reducing fire hazards [25]

#### **QUESTION 3**

| 3.1 | Fluid Area   |                        | =      | $\pi x d^2$ 4                             |     |
|-----|--------------|------------------------|--------|-------------------------------------------|-----|
|     |              |                        | =      | $3,142 \times 0,54^2$                     |     |
|     |              |                        | =      | 229,022 x 10 <sup>-3</sup> m <sup>2</sup> |     |
|     |              |                        | =      | 0,229 mm <sup>2</sup>                     |     |
| Р   | =            | F                      |        |                                           |     |
| F   | =            | <sup>a</sup><br>Pxa    |        |                                           |     |
| F   | =            | 9 000 000 Pa x 0,2     | 229    |                                           |     |
| F   | =            | 2 061 000 N            |        |                                           |     |
| F   | =            | 2,061 MN               |        |                                           | (6) |
| 3.2 | Hydra        | aulics is the transfer | and co | ntrol of power, by means of fluids.       | (3) |
| 3.3 | Pascal's Law |                        |        |                                           |     |

The pressure of a liquid in a constricted space e.g. a cylinder, will be distributed equally in all directions.

- 3.4 Fluids are viscous i.e. they offer resistance to flow. Different fluids have different viscosities e.g. oil and water. (4)
- 3.5 For the **26H7 g6** fit
  - 3.5.1 The limits for a **26H7 g6** hole shaft combination

|      | Hole        | Shaft       |
|------|-------------|-------------|
| High | 26 + 0,021  | 26-0,007    |
| _    | = 26,043 mm | = 25,993    |
|      |             |             |
| Low  | 26 + 0      | 26 - 0,02   |
|      | = 26,00 mm  | = 26,980 mm |
|      |             |             |

3.5.2 Type of fit : Clearance fit

(1)

(4)

(4)

| 3.6 | Cubic crystal, Pyramid crystal, Calcite crystal | (3)<br>[ <b>25</b> ] |  |
|-----|-------------------------------------------------|----------------------|--|
|     | QUESTION 4                                      |                      |  |

4.1.1 Work done = force x distance  
= 
$$200 \text{ N x 8 m}$$
  
=  $1 600 \text{ Nm}$   
=  $1 600 \text{ joule}$   
=  $1,6 \text{ kJ}$  (4)  
4.1.2 Work done = force x distance

$$= 42 \text{ N x } 400 \text{ m}$$
  
= 16 800 Nm  
= 16 800 joule  
= 16,8 kJ (4)

4.2.1 Average force in rope = force for lift + average force for rope

F avg =  $480 \times 10 + \frac{(initial \ force + \ final \ force)}{2}$ F avg =  $4800 + \frac{(4200 + 0)}{2}$ = 4800 + 2100F avg = 6900 N

(6)

4.2.2 Work done W = F avg x S

= 6900 x 180 m

$$= 1242 \, kJ$$
 (3)

4.2.3 Power =  $\begin{matrix} W \\ t \end{matrix} = \begin{matrix} 1242 & kJ \\ 4 & x & 60 \end{matrix}$ 

 $= 5,175 \,\mathrm{kW}$  (3)

| 4.3 | A force should be applied. |     |  |  |  |  |
|-----|----------------------------|-----|--|--|--|--|
|     | There must be movement.    |     |  |  |  |  |
|     | There must be resistance.  | (3) |  |  |  |  |

4.4Power is the rate at which work is done.(2)[25]

## **QUESTION 5**

| 5.1 | 5.1.1 | Propane | (1) |
|-----|-------|---------|-----|
|     | 5.1.2 | Pentane | (1) |
|     | 5.1.3 | Hexane  | (1) |
|     | 5.1.4 | Heptane | (1) |
|     | 5.1.5 | Octane  | (1) |

## 5.2 Boyle's law

| The volume of a given mass of gas is inversely proportional to the pressure on it, |     |
|------------------------------------------------------------------------------------|-----|
| if the temperature remains constant.                                               | (4) |

## 5.3 Charles's Law

The volume of a given mass at constant pressure, changes by

| 1<br>273 | of its volume at 0°C for each 1°C change in temperature. | (4)   |
|----------|----------------------------------------------------------|-------|
|          |                                                          | · · / |

(5)

5.4 The molecules are identical

- Distance between molecules is very big.
- Gas only takes up volume because of movement and collisions of molecules.
- No power between molecules except between collisions.
- Collisions are fully elastic.

5.5 5.5.1

•

 $A = \frac{1P}{PLNn}$  $= \frac{115820}{946000 \ x \ 0,110 \ x \ 29,16 \ x \ 6}$  $= \frac{115820}{18206337,6}$ 

 $\pi r^{2} = 6361,521 \text{ mm}^{2}$   $r^{2} = \frac{6361,521 \text{ mm}^{2}}{\pi}$   $r = \sqrt{2024,93}$  r = 45 mm d = 2 x r d = 90 mm

