GAUTENG DEPARTMENT OF EDUCATION SENIOR CERTIFICATE EXAMINATION

TECHNIKA (ELECTRONICS) SG

FEB / MAR 2006

TIME: 3 hours

MARKS: 200

INSTRUCTIONS:

- Answer ALL the questions.
- Sketches and diagrams must be large, neat and labelled.
- An approved calculator may be used.
- All calculations must be shown.
- Answers must be clearly numbered in accordance with the question paper.
- An information sheet is provided at the end of the paper.

QUESTION 1 ELECTRIC CURRENT THEORY

- 1.1 Study the parallel circuit in **Figure 1** and calculate the following:
 - 1.1.1 The reactance of each component(4)1.1.2 The current which will flow through each branch(6)1.1.3 The total supply current(3)1.1.4 The total circuit impedance(3)

1.2 A series RLC-tuned circuit has a resonant frequency of 95 MHz and a bandwidth of 200 kHz. If the capacitor is a 2,5 pF and the wire used to wind the coil has zero resistance, calculate the

1.2.1 O-factor of the circuit	(3)
	(0)
1.2.2 size of the necessary coil	(5)
	(0)
123 resistance of the circuit	(3)
	(0)
	[27]
	161

L

3

QUESTION 2 SEMICONDUCTOR DEVICES

2.1	The "Darlington pair" transistor is a widely implemented device in power electronics such as car amplifiers and Hi-Fi systems. Explain, by means of a neat, labelled sketch and a brief description, the basic construction and functional operation of a Darlington transistor (Darlington pair).	(12)
2.2	With the aid of sketches and a brief explanation, describe any project you did this year regarding semiconductor devices.	(10)
2.3	Using your knowledge of semiconductors, draw the circuit symbol for each of the following:	
	 2.3.1 NPN-transistor 2.3.2 FET-transistor 2.3.3 SCR (Silicon-controlled rectifier) 2.3.4 UJT transistor 	(2) (2) (2) (2) [30]
	QUESTION 3 AMPLIFIERS	
3.1	Transistors are connected in different stages in amplifiers to get the necessary amplification. Explain with the aid of a neat, labelled sketch and a brief description the working principle of the balanced coupled amplifier OR the	(20)

	resistor-capacitor coupled amplifier.	(20)
3.2	Show, by means of neatly labelled graphs , the difference between the Class B and Class C amplifiers . The position of the static working point (the Q- point) and all in- and output wave forms must be shown on each graph.	(10)
3.3	Explain briefly what is understood by bandwidth with regards to amplifiers.	(4)

[34]

QUESTION 4 SWITCHING AND CONTROL CIRCUITS

4.1 Identify the following circuits and write brief notes to explain the working principle of each:

TECHNIKA (ELECTRONICS) SG	4
714-2/0 L	

QUESTION 5 COMPUTER PRINCIPLES

- 5.1 For each of the following circuits (5.1.1 5.1.4):
 - (a) Write the Boolean expression for the input.
 - (b) Create a truth table to explain the equation.
 - 5.1.1

5.1.2

5.1.3

Figure 8

5.1.4

[43]

(7)

(13)

TECHNIKA (ELECTRONICS) SG	6
714-2/0 L	-

QUESTION 6 MEASURING INSTRUMENTS

6.1	Draw a neat, labelled block diagram to explain the working principle of an oscilloscope.	(15)
6.2	State THREE uses of a multimeter.	(3)
6.3	Draw a neat, labelled block diagram explaining the working principle of a digital multimeter.	(6) [24]
	QUESTION 7 SAFETY PRECAUTIONS	
7.1	What is the difference between an unsafe act and an unsafe condition ?	(3)
7.2	State FOUR unsafe acts.	(4)
7.3	State FOUR unsafe conditions.	(4)
7.4	Why should direct pressure be applied to a gushing wound?	(5)
7.5	State TWO safety measures, which must be adhered to when working with a multimeter.	(2) [18]
	TOTAL:	200

INFORMATION SHEET / INLIGTINGSBLAD

ELECTRIC CURRENT THEORY / ELEKTRIESE STROOMTEORIE

 $I = \frac{V}{R} AMPS$ $P = V \times I WATT$ $t = \frac{1}{F}$ seconds / sekondes $V_{ave,/gem} = V_m \times 0,637$ $V_{\rm rms./wgk.} = V_{\rm m} \ge 0,707$ STAR / STER $V_L = \sqrt{3} \times V_P$ $I_L = I_P$ DELTA $I_L = \sqrt{3} \times I_P$ $V_L = V_P$ $f_r = \frac{1}{2 x \pi x \sqrt{LC}}$ $X_{\rm C} = \frac{1}{2 \, x \, \pi \, x \, F \, x \, C}$ $f_r = \frac{1}{2 x \pi} x \sqrt{\frac{1}{1 C} - \frac{R^2}{L^2}}$ $X_L = 2 \times \pi \times F \times L$ $V_{T} = \sqrt{V_{R}^{2} + V_{C}^{2}}$ $Q = \frac{X_L}{R}$ $V_{T} = \sqrt{V_{R}^{2} + V_{L}^{2}}$ $Q = \frac{X_C}{R}$ $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$ $V_{T} = \sqrt{V_{R}^{2} + V_{X}^{2}}$ $\frac{V_1}{V_2} = \frac{N_1}{N_2} = \frac{I_2}{I_4}$ $V_X = V_L - V_C$

8

 $V_{c} = I_{T} \times X_{c}$ $V_{L} = I_{T} \times X_{L}$ $\frac{N_{1}}{N_{2}} = \sqrt{\frac{Z_{1}}{Z_{2}}}$ $V_{R} = I_{T} \times R$ $V_{T} = \sqrt{V_{R}^{2} + V_{X}^{2}}$ $Z = \sqrt{R^{2} + X_{c}^{2}}$ $V_{X} = V_{c} \simeq V_{L}$ $Z = \sqrt{R^{2} + X_{L}^{2}}$ $I_{T} = \sqrt{I_{R}^{2} + I_{X}^{2}}$ $Z = \sqrt{R^{2} + X_{L}^{2}}$ $X_{X} = X_{c} \simeq I_{L}$ $X_{X} = X_{L} \simeq X_{c}$

AMPLIFIERS / VERSTERKERS

 $l_c + l_b$

$$V_{cc} = V_{Rc} + V_{ce}$$

$$l_c = \frac{V_{cc}}{Rc}$$

DECIBEL RATIOS / DESIBELVERHOUDINGS

$$G_{l} = 20 \text{ LOG } \frac{l_2}{l_1}$$

$$G_{V} = 20 \text{ LOG } \frac{V_2}{V_1}$$

$$G_{P} = 10 \text{ LOG } \frac{P_2}{P_1}$$

OPERATIONAL AMPLIFIERS / OPERASIONEL E VERSTERKERS

$$A_{V} = -\frac{R_{F}}{R_{1}}$$

$$V_{OUT} = A_{V} \times V_{i}$$

$$A_{V} = 1 + \frac{R_{F}}{R_{1}}$$

$$V_{OUT} = A_{V} \times V_{i}$$

$$V_{OUT} = \frac{1}{RC} \int V_{i} dt$$

$$V_{OUT} = -RC \frac{dv}{dt}$$

$$V_{OUT} = -(V_{1} \frac{R_{F}}{R_{1}} + V_{2} \frac{R_{F}}{R_{2}} + V_{3} \frac{R_{F}}{R_{3}})$$

COMPUTER PRINCIPLES / REKENAARBEGINSELS

A.B = B.AA + B = B + AA. (B.C) = (A.B).CA + (B + C) = (A + B) + CA. (B + C) = AB + AC $A + (B.C) = (A + B) \cdot (A + C)$ A(A + B) = AA + (AB) = AA + 0 = AA + 1 = 1 A.0 = 0A.1 = A $A + \underline{A} = A$ $A + \overline{A} = 1$ $A.\underline{A} = A$ A.A = 0

END / EINDE